forked from mrq/DL-Art-School
misc audio support
This commit is contained in:
parent
d553808d24
commit
d2bdeb6f20
|
@ -1,7 +1,10 @@
|
|||
import os
|
||||
import pathlib
|
||||
import sys
|
||||
import time
|
||||
import math
|
||||
|
||||
import scipy
|
||||
import torch.nn.functional as F
|
||||
from datetime import datetime
|
||||
import random
|
||||
|
@ -10,6 +13,8 @@ from collections import OrderedDict
|
|||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
import torchaudio
|
||||
from audio2numpy import open_audio
|
||||
from torchvision.utils import make_grid
|
||||
from shutil import get_terminal_size
|
||||
import scp
|
||||
|
@ -541,3 +546,59 @@ def optimizer_to(opt, device):
|
|||
subparam.data = subparam.data.to(device)
|
||||
if subparam._grad is not None:
|
||||
subparam._grad.data = subparam._grad.data.to(device)
|
||||
|
||||
#''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
|
||||
#''' AUDIO UTILS '''
|
||||
#''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
|
||||
|
||||
|
||||
def find_audio_files(base_path, globs=['*.wav', '*.mp3', '*.ogg', '*.flac']):
|
||||
path = pathlib.Path(base_path)
|
||||
paths = []
|
||||
for glob in globs:
|
||||
paths.extend([str(f) for f in path.rglob(glob)])
|
||||
return paths
|
||||
|
||||
|
||||
def load_audio(audiopath, sampling_rate, raw_data=None):
|
||||
if raw_data is not None:
|
||||
# Assume the data is wav format. SciPy's reader can read raw WAV data from a BytesIO wrapper.
|
||||
audio, lsr = load_wav_to_torch(raw_data)
|
||||
else:
|
||||
if audiopath[-4:] == '.wav':
|
||||
audio, lsr = load_wav_to_torch(audiopath)
|
||||
else:
|
||||
audio, lsr = open_audio(audiopath)
|
||||
audio = torch.FloatTensor(audio)
|
||||
|
||||
# Remove any channel data.
|
||||
if len(audio.shape) > 1:
|
||||
if audio.shape[0] < 5:
|
||||
audio = audio[0]
|
||||
else:
|
||||
assert audio.shape[1] < 5
|
||||
audio = audio[:, 0]
|
||||
|
||||
if lsr != sampling_rate:
|
||||
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
|
||||
|
||||
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
|
||||
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
|
||||
if torch.any(audio > 2) or not torch.any(audio < 0):
|
||||
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
|
||||
audio.clip_(-1, 1)
|
||||
|
||||
return audio
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
||||
sampling_rate, data = scipy.io.wavfile.read(full_path)
|
||||
if data.dtype == np.int32:
|
||||
norm_fix = 2 ** 31
|
||||
elif data.dtype == np.int16:
|
||||
norm_fix = 2 ** 15
|
||||
elif data.dtype == np.float16 or data.dtype == np.float32:
|
||||
norm_fix = 1.
|
||||
else:
|
||||
raise NotImplemented(f"Provided data dtype not supported: {data.dtype}")
|
||||
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate)
|
||||
|
|
Loading…
Reference in New Issue
Block a user