forked from mrq/DL-Art-School
SSG update
This commit is contained in:
parent
e3053e4e55
commit
d9ae970fd9
|
@ -1,7 +1,7 @@
|
|||
import math
|
||||
import functools
|
||||
from models.archs.arch_util import MultiConvBlock, ConvGnLelu, ConvGnSilu, ReferenceJoinBlock
|
||||
from models.archs.SwitchedResidualGenerator_arch import ConfigurableSwitchComputer
|
||||
from models.archs.SwitchedResidualGenerator_arch import ConfigurableSwitchComputer, gather_2d
|
||||
from models.archs.SPSR_arch import ImageGradientNoPadding
|
||||
from torch import nn
|
||||
import torch
|
||||
|
@ -10,15 +10,15 @@ from switched_conv_util import save_attention_to_image_rgb
|
|||
from switched_conv import compute_attention_specificity
|
||||
import os
|
||||
import torchvision
|
||||
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
# VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation
|
||||
# Doubles the input filter count.
|
||||
class HalvingProcessingBlock(nn.Module):
|
||||
def __init__(self, filters):
|
||||
def __init__(self, filters, factor=2):
|
||||
super(HalvingProcessingBlock, self).__init__()
|
||||
self.bnconv1 = ConvGnSilu(filters, filters * 2, kernel_size=1, stride=2, norm=False, bias=False)
|
||||
self.bnconv2 = ConvGnSilu(filters * 2, filters * 2, norm=True, bias=False)
|
||||
self.bnconv1 = ConvGnSilu(filters, filters, norm=False, bias=False)
|
||||
self.bnconv2 = ConvGnSilu(filters, int(filters * factor), kernel_size=1, stride=2, norm=True, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.bnconv1(x)
|
||||
|
@ -26,10 +26,10 @@ class HalvingProcessingBlock(nn.Module):
|
|||
|
||||
|
||||
class ExpansionBlock2(nn.Module):
|
||||
def __init__(self, filters_in, filters_out=None, block=ConvGnSilu):
|
||||
def __init__(self, filters_in, filters_out=None, block=ConvGnSilu, factor=2):
|
||||
super(ExpansionBlock2, self).__init__()
|
||||
if filters_out is None:
|
||||
filters_out = filters_in // 2
|
||||
filters_out = int(filters_in / factor)
|
||||
self.decimate = block(filters_in, filters_out, kernel_size=1, bias=False, activation=True, norm=False)
|
||||
self.process_passthrough = block(filters_out, filters_out, kernel_size=3, bias=True, activation=True, norm=False)
|
||||
self.conjoin = block(filters_out*2, filters_out*2, kernel_size=1, bias=False, activation=True, norm=False)
|
||||
|
@ -59,27 +59,29 @@ class UpconvBlock(nn.Module):
|
|||
return self.process(x)
|
||||
|
||||
|
||||
class SSGMultiplexer(nn.Module):
|
||||
def __init__(self, nf, multiplexer_channels, reductions=2):
|
||||
super(SSGMultiplexer, self).__init__()
|
||||
class QueryKeyMultiplexer(nn.Module):
|
||||
def __init__(self, nf, multiplexer_channels, embedding_channels=216, reductions=3):
|
||||
super(QueryKeyMultiplexer, self).__init__()
|
||||
|
||||
# Blocks used to create the query
|
||||
self.input_process = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True)
|
||||
self.embedding_process = ConvGnSilu(256, 256, activation=True, norm=False, bias=True)
|
||||
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(nf * 2 ** i) for i in range(reductions)])
|
||||
reduction_filters = nf * 2 ** reductions
|
||||
self.embedding_process = ConvGnSilu(embedding_channels, 128, kernel_size=1, activation=True, norm=False, bias=True)
|
||||
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(int(nf * 1.5 ** i), factor=1.5) for i in range(reductions)])
|
||||
reduction_filters = int(nf * 1.5 ** reductions)
|
||||
self.processing_blocks = nn.Sequential(
|
||||
ConvGnSilu(reduction_filters + 256, reduction_filters + 128, kernel_size=1, activation=True, norm=False, bias=True),
|
||||
ConvGnSilu(reduction_filters + 128, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False))
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(reductions)])
|
||||
ConvGnSilu(reduction_filters + 128, reduction_filters + 64, kernel_size=1, activation=True, norm=False, bias=True),
|
||||
ConvGnSilu(reduction_filters + 64, reduction_filters, kernel_size=1, activation=True, norm=False, bias=False),
|
||||
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False),
|
||||
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False))
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock2(int(reduction_filters // (1.5 ** i)), factor=1.5) for i in range(reductions)])
|
||||
|
||||
# Blocks used to create the key
|
||||
self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=True)
|
||||
self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=False)
|
||||
|
||||
# Postprocessing blocks.
|
||||
self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=1, activation=True, norm=False, bias=False)
|
||||
self.cbl1 = ConvGnSilu(nf, nf // 4, kernel_size=1, activation=True, norm=True, bias=False, num_groups=4)
|
||||
self.cbl2 = ConvGnSilu(nf // 4, 1, kernel_size=1, activation=False, norm=False, bias=False)
|
||||
self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=True, bias=False, num_groups=4)
|
||||
self.cbl2 = ConvGnSilu(nf // 2, 1, kernel_size=1, norm=False, bias=False)
|
||||
|
||||
def forward(self, x, embedding, transformations):
|
||||
q = self.input_process(x)
|
||||
|
@ -104,34 +106,56 @@ class SSGMultiplexer(nn.Module):
|
|||
|
||||
return v.view(b, t, h, w)
|
||||
|
||||
|
||||
# Computes a linear latent by performing processing on the reference image and returning the filters of a single point,
|
||||
# which should be centered on the image patch being processed.
|
||||
#
|
||||
# Output is base_filters * 1.5^3.
|
||||
class ReferenceImageBranch(nn.Module):
|
||||
def __init__(self, base_filters=64):
|
||||
super(ReferenceImageBranch, self).__init__()
|
||||
final_filters = int(base_filters*1.5**3)
|
||||
self.features = nn.Sequential(ConvGnSilu(4, base_filters, kernel_size=7, bias=True),
|
||||
HalvingProcessingBlock(base_filters, factor=1.5),
|
||||
HalvingProcessingBlock(int(base_filters*1.5), factor=1.5),
|
||||
HalvingProcessingBlock(int(base_filters*1.5**2), factor=1.5),
|
||||
ConvGnSilu(final_filters, final_filters, activation=True, norm=True, bias=False))
|
||||
|
||||
# center_point is a [b,2] long tensor describing the center point of where the patch was taken from the reference
|
||||
# image.
|
||||
def forward(self, x, center_point):
|
||||
x = self.features(x)
|
||||
return gather_2d(x, center_point // 8) # Divide by 8 to scale the center_point down.
|
||||
|
||||
|
||||
class SSGr1(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
|
||||
super(SSGr1, self).__init__()
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
self.nf = nf
|
||||
|
||||
# processing the input embedding
|
||||
self.reference_embedding = ReferenceImageBranch(nf)
|
||||
|
||||
# switch options
|
||||
transformation_filters = nf
|
||||
self.transformation_counts = xforms
|
||||
multiplx_fn = functools.partial(SSGMultiplexer, transformation_filters)
|
||||
multiplx_fn = functools.partial(QueryKeyMultiplexer, transformation_filters)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.25),
|
||||
transformation_filters, kernel_size=3, depth=3,
|
||||
transformation_filters, kernel_size=3, depth=4,
|
||||
weight_init_factor=.1)
|
||||
|
||||
# Feature branch
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.noise_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=True)
|
||||
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
|
||||
self.feature_lr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
|
||||
# Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague.
|
||||
self.get_g_nopadding = ImageGradientNoPadding()
|
||||
self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.noise_ref_join_grad = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.grad_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, final_norm=False, kernel_size=1, depth=2)
|
||||
self.sw_grad = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
|
@ -139,11 +163,10 @@ class SSGr1(nn.Module):
|
|||
transform_count=self.transformation_counts // 2, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=True)
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample_grad = nn.Sequential(*[UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False) for _ in range(n_upscale)])
|
||||
self.upsample_grad = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False)
|
||||
self.grad_branch_output_conv = ConvGnLelu(nf // 2, out_nc, kernel_size=1, norm=False, activation=False, bias=True)
|
||||
|
||||
# Join branch (grad+fea)
|
||||
self.noise_ref_join_conjoin = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.conjoin_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, kernel_size=1, depth=2)
|
||||
self.conjoin_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
|
@ -151,46 +174,43 @@ class SSGr1(nn.Module):
|
|||
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=True)
|
||||
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample = nn.Sequential(*[UpconvBlock(nf, 64, block=ConvGnLelu, norm=False, activation=True, bias=True) for _ in range(n_upscale)])
|
||||
self.final_hr_conv2 = ConvGnLelu(64, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True)
|
||||
self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True)
|
||||
self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.switches = [self.sw1, self.sw_grad, self.conjoin_sw]
|
||||
self.attentions = None
|
||||
self.lr = None
|
||||
self.init_temperature = init_temperature
|
||||
self.final_temperature_step = 10000
|
||||
|
||||
def forward(self, x, embedding):
|
||||
noise_stds = []
|
||||
def forward(self, x, ref, ref_center):
|
||||
# The attention_maps debugger outputs <x>. Save that here.
|
||||
self.lr = x.detach().cpu()
|
||||
|
||||
x_grad = self.get_g_nopadding(x)
|
||||
ref_code = checkpoint(self.reference_embedding, ref, ref_center)
|
||||
ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8)
|
||||
|
||||
x = self.model_fea_conv(x)
|
||||
x1 = x
|
||||
x1, a1 = self.sw1(x1, True, identity=x, att_in=(x1, embedding))
|
||||
x1, a1 = self.sw1(x1, True, identity=x, att_in=(x1, ref_embedding))
|
||||
|
||||
x_grad = self.grad_conv(x_grad)
|
||||
x_grad_identity = x_grad
|
||||
x_grad, nstd = self.noise_ref_join_grad(x_grad, torch.randn_like(x_grad))
|
||||
x_grad, grad_fea_std = self.grad_ref_join(x_grad, x1)
|
||||
x_grad, a3 = self.sw_grad(x_grad, True, identity=x_grad_identity, att_in=(x_grad, embedding))
|
||||
x_grad, a3 = self.sw_grad(x_grad, True, identity=x_grad_identity, att_in=(x_grad, ref_embedding))
|
||||
x_grad = self.grad_lr_conv(x_grad)
|
||||
x_grad_out = self.upsample_grad(x_grad)
|
||||
x_grad_out = self.grad_branch_output_conv(x_grad_out)
|
||||
noise_stds.append(nstd)
|
||||
|
||||
x_out = x1
|
||||
x_out, nstd = self.noise_ref_join_conjoin(x_out, torch.randn_like(x_out))
|
||||
x_out, fea_grad_std = self.conjoin_ref_join(x_out, x_grad)
|
||||
x_out, a4 = self.conjoin_sw(x_out, True, identity=x1, att_in=(x_out, embedding))
|
||||
x_out, a4 = self.conjoin_sw(x_out, True, identity=x1, att_in=(x_out, ref_embedding))
|
||||
x_out = self.final_lr_conv(x_out)
|
||||
x_out = self.upsample(x_out)
|
||||
x_out = checkpoint(self.upsample, x_out)
|
||||
x_out = self.final_hr_conv2(x_out)
|
||||
noise_stds.append(nstd)
|
||||
|
||||
self.attentions = [a1, a3, a4]
|
||||
self.noise_stds = torch.stack(noise_stds).mean().detach().cpu()
|
||||
self.grad_fea_std = grad_fea_std.detach().cpu()
|
||||
self.fea_grad_std = fea_grad_std.detach().cpu()
|
||||
return x_grad_out, x_out, x_grad
|
||||
|
@ -216,7 +236,6 @@ class SSGr1(nn.Module):
|
|||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp,
|
||||
"noise_branch_std_dev": self.noise_stds,
|
||||
"grad_branch_feat_intg_std_dev": self.grad_fea_std,
|
||||
"conjoin_branch_grad_intg_std_dev": self.fea_grad_std}
|
||||
for i in range(len(means)):
|
||||
|
@ -224,279 +243,3 @@ class SSGr1(nn.Module):
|
|||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
class SSGMultiplexerNoEmbedding(nn.Module):
|
||||
def __init__(self, nf, multiplexer_channels, reductions=2):
|
||||
super(SSGMultiplexerNoEmbedding, self).__init__()
|
||||
|
||||
# Blocks used to create the query
|
||||
self.input_process = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True)
|
||||
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(nf * 2 ** i) for i in range(reductions)])
|
||||
reduction_filters = nf * 2 ** reductions
|
||||
self.processing_blocks = nn.Sequential(
|
||||
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False),
|
||||
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False))
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(reductions)])
|
||||
|
||||
# Blocks used to create the key
|
||||
self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=True)
|
||||
|
||||
# Postprocessing blocks.
|
||||
self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=1, activation=True, norm=False, bias=False)
|
||||
self.cbl1 = ConvGnSilu(nf, nf // 4, kernel_size=1, activation=True, norm=True, bias=False, num_groups=4)
|
||||
self.cbl2 = ConvGnSilu(nf // 4, 1, kernel_size=1, activation=False, norm=False, bias=False)
|
||||
|
||||
def forward(self, x, transformations):
|
||||
q = self.input_process(x)
|
||||
reduction_identities = []
|
||||
for b in self.reduction_blocks:
|
||||
reduction_identities.append(q)
|
||||
q = b(q)
|
||||
q = self.processing_blocks(q)
|
||||
for i, b in enumerate(self.expansion_blocks):
|
||||
q = b(q, reduction_identities[-i - 1])
|
||||
|
||||
b, t, f, h, w = transformations.shape
|
||||
k = transformations.view(b * t, f, h, w)
|
||||
k = self.key_process(k)
|
||||
|
||||
q = q.view(b, 1, f, h, w).repeat(1, t, 1, 1, 1).view(b * t, f, h, w)
|
||||
v = self.query_key_combine(torch.cat([q, k], dim=1))
|
||||
|
||||
v = self.cbl1(v)
|
||||
v = self.cbl2(v)
|
||||
|
||||
return v.view(b, t, h, w)
|
||||
|
||||
|
||||
class SSGNoEmbedding(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
|
||||
super(SSGNoEmbedding, self).__init__()
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
|
||||
# switch options
|
||||
transformation_filters = nf
|
||||
self.transformation_counts = xforms
|
||||
multiplx_fn = functools.partial(SSGMultiplexerNoEmbedding, transformation_filters, reductions=3)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.25),
|
||||
transformation_filters, kernel_size=3, depth=3,
|
||||
weight_init_factor=.1)
|
||||
|
||||
# Feature branch
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.noise_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts,
|
||||
init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False,
|
||||
feed_transforms_into_multiplexer=True)
|
||||
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
|
||||
self.feature_lr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
|
||||
# Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague.
|
||||
self.get_g_nopadding = ImageGradientNoPadding()
|
||||
self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.noise_ref_join_grad = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.grad_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, final_norm=False, kernel_size=1,
|
||||
depth=2)
|
||||
self.sw_grad = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts // 2,
|
||||
init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False,
|
||||
feed_transforms_into_multiplexer=True)
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample_grad = nn.Sequential(
|
||||
*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=True, bias=False) for _ in
|
||||
range(n_upscale)])
|
||||
self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False,
|
||||
bias=True)
|
||||
|
||||
# Join branch (grad+fea)
|
||||
self.noise_ref_join_conjoin = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.conjoin_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, kernel_size=1, depth=2)
|
||||
self.conjoin_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts,
|
||||
init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False,
|
||||
feed_transforms_into_multiplexer=True)
|
||||
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample = nn.Sequential(
|
||||
*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=True, bias=True) for _ in
|
||||
range(n_upscale)])
|
||||
self.final_hr_conv2 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.switches = [self.sw1, self.sw_grad, self.conjoin_sw]
|
||||
self.attentions = None
|
||||
self.lr = None
|
||||
self.init_temperature = init_temperature
|
||||
self.final_temperature_step = 10000
|
||||
|
||||
def forward(self, x, *args):
|
||||
noise_stds = []
|
||||
# The attention_maps debugger outputs <x>. Save that here.
|
||||
self.lr = x.detach().cpu()
|
||||
|
||||
x_grad = self.get_g_nopadding(x)
|
||||
|
||||
x = self.model_fea_conv(x)
|
||||
x1, a1 = self.sw1(x, True)
|
||||
|
||||
x_grad = self.grad_conv(x_grad)
|
||||
x_grad_identity = x_grad
|
||||
x_grad, nstd = self.noise_ref_join_grad(x_grad, torch.randn_like(x_grad))
|
||||
x_grad, grad_fea_std = self.grad_ref_join(x_grad, x1)
|
||||
x_grad, a3 = self.sw_grad(x_grad, True, identity=x_grad_identity)
|
||||
x_grad = self.grad_lr_conv(x_grad)
|
||||
x_grad_out = self.upsample_grad(x_grad)
|
||||
x_grad_out = self.grad_branch_output_conv(x_grad_out)
|
||||
noise_stds.append(nstd)
|
||||
|
||||
x_out = x1
|
||||
x_out, nstd = self.noise_ref_join_conjoin(x_out, torch.randn_like(x_out))
|
||||
x_out, fea_grad_std = self.conjoin_ref_join(x_out, x_grad)
|
||||
x_out, a4 = self.conjoin_sw(x_out, True, identity=x1)
|
||||
x_out = self.final_lr_conv(x_out)
|
||||
x_out = self.upsample(x_out)
|
||||
x_out = self.final_hr_conv2(x_out)
|
||||
noise_stds.append(nstd)
|
||||
|
||||
self.attentions = [a1, a3, a4]
|
||||
self.noise_stds = torch.stack(noise_stds).mean().detach().cpu()
|
||||
self.grad_fea_std = grad_fea_std.detach().cpu()
|
||||
self.fea_grad_std = fea_grad_std.detach().cpu()
|
||||
return x_grad_out, x_out, x_grad
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, 1 + self.init_temperature *
|
||||
(self.final_temperature_step - step) / self.final_temperature_step)
|
||||
self.set_temperature(temp)
|
||||
if step % 200 == 0:
|
||||
output_path = os.path.join(experiments_path, "attention_maps")
|
||||
prefix = "amap_%i_a%i_%%i.png"
|
||||
[save_attention_to_image_rgb(output_path, self.attentions[i], self.transformation_counts,
|
||||
prefix % (step, i), step, output_mag=False) for i in
|
||||
range(len(self.attentions))]
|
||||
torchvision.utils.save_image(self.lr, os.path.join(experiments_path, "attention_maps",
|
||||
"amap_%i_base_image.png" % (step,)))
|
||||
|
||||
def get_debug_values(self, step, net_name):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp,
|
||||
"noise_branch_std_dev": self.noise_stds,
|
||||
"grad_branch_feat_intg_std_dev": self.grad_fea_std,
|
||||
"conjoin_branch_grad_intg_std_dev": self.fea_grad_std}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
|
||||
class SSGLite(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
|
||||
super(SSGLite, self).__init__()
|
||||
|
||||
# switch options
|
||||
transformation_filters = nf
|
||||
self.transformation_counts = xforms
|
||||
multiplx_fn = functools.partial(SSGMultiplexerNoEmbedding, transformation_filters, reductions=3)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.25),
|
||||
transformation_filters, kernel_size=5, depth=3,
|
||||
weight_init_factor=.1)
|
||||
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.noise_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts,
|
||||
init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False,
|
||||
feed_transforms_into_multiplexer=True)
|
||||
self.intermediate_conv = ConvGnLelu(nf, nf, kernel_size=1, norm=True, activation=False)
|
||||
self.noise_ref_join_conjoin = ReferenceJoinBlock(nf, residual_weight_init_factor=.1, kernel_size=1, depth=2)
|
||||
self.sw2 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts,
|
||||
init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False,
|
||||
feed_transforms_into_multiplexer=True)
|
||||
self.intermediate_conv2 = ConvGnLelu(nf, nf, kernel_size=1, norm=True, activation=False)
|
||||
self.sw3 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts,
|
||||
init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False,
|
||||
feed_transforms_into_multiplexer=True)
|
||||
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
if upscale > 1:
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
self.upsample = nn.Sequential(
|
||||
*[UpconvBlock(nf, 64, block=ConvGnLelu, norm=False, activation=True, bias=True) for _ in
|
||||
range(n_upscale)])
|
||||
else:
|
||||
self.upsample = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True)
|
||||
self.final_hr_conv2 = ConvGnLelu(64, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.switches = [self.sw1, self.sw2, self.sw3]
|
||||
self.attentions = None
|
||||
self.lr = None
|
||||
self.init_temperature = init_temperature
|
||||
self.final_temperature_step = 10000
|
||||
|
||||
def forward(self, x, *args):
|
||||
# The attention_maps debugger outputs <x>. Save that here.
|
||||
self.lr = x.detach().cpu()
|
||||
|
||||
x = self.model_fea_conv(x)
|
||||
x1, a1 = self.sw1(x, True)
|
||||
x1 = self.intermediate_conv(x1)
|
||||
x2, a2 = self.sw2(x1, True)
|
||||
x2 = self.intermediate_conv2(x2)
|
||||
x3, a3 = self.sw3(x2, True)
|
||||
x_out = self.final_lr_conv(x3)
|
||||
x_out = self.upsample(x_out)
|
||||
x_out = self.final_hr_conv2(x_out)
|
||||
self.attentions = [a1, a2, a3]
|
||||
return x_out
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, 1 + self.init_temperature *
|
||||
(self.final_temperature_step - step) / self.final_temperature_step)
|
||||
self.set_temperature(temp)
|
||||
if step % 200 == 0:
|
||||
output_path = os.path.join(experiments_path, "attention_maps")
|
||||
prefix = "amap_%i_a%i_%%i.png"
|
||||
[save_attention_to_image_rgb(output_path, self.attentions[i], self.transformation_counts,
|
||||
prefix % (step, i), step, output_mag=False) for i in
|
||||
range(len(self.attentions))]
|
||||
torchvision.utils.save_image(self.lr, os.path.join(experiments_path, "attention_maps",
|
||||
"amap_%i_base_image.png" % (step,)))
|
||||
|
||||
def get_debug_values(self, step, net_name):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
Loading…
Reference in New Issue
Block a user