forked from mrq/DL-Art-School
Update use_gpt_tts to be usable with unified_voice2
This commit is contained in:
parent
7b4544b83a
commit
dc9cd8c206
|
@ -42,6 +42,9 @@ class LearnedPositionEmbeddings(nn.Module):
|
||||||
sl = x.shape[1]
|
sl = x.shape[1]
|
||||||
return self.emb(torch.arange(0, sl, device=x.device))
|
return self.emb(torch.arange(0, sl, device=x.device))
|
||||||
|
|
||||||
|
def get_fixed_embedding(self, ind, dev):
|
||||||
|
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
||||||
|
|
||||||
|
|
||||||
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
|
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -3,10 +3,11 @@ import functools
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from transformers import GPT2Model, GPT2Config
|
from transformers import GPT2Model, GPT2Config, GPT2PreTrainedModel
|
||||||
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||||
|
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
||||||
|
|
||||||
from models.arch_util import AttentionBlock
|
from models.arch_util import AttentionBlock
|
||||||
from models.gpt_voice.gpt_asr_hf import GPT2InferenceModel
|
|
||||||
from models.gpt_voice.gpt_asr_hf2 import ResBlock
|
from models.gpt_voice.gpt_asr_hf2 import ResBlock
|
||||||
from models.gpt_voice.transformer_builders import build_hf_gpt_transformer
|
from models.gpt_voice.transformer_builders import build_hf_gpt_transformer
|
||||||
from models.tacotron2.text import symbols
|
from models.tacotron2.text import symbols
|
||||||
|
@ -14,6 +15,160 @@ from trainer.networks import register_model
|
||||||
from utils.util import opt_get
|
from utils.util import opt_get
|
||||||
|
|
||||||
|
|
||||||
|
class GPT2InferenceModel(GPT2PreTrainedModel):
|
||||||
|
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear):
|
||||||
|
super().__init__(config)
|
||||||
|
self.transformer = gpt
|
||||||
|
self.text_pos_embedding = text_pos_emb
|
||||||
|
self.embeddings = embeddings
|
||||||
|
self.lm_head = nn.Sequential(norm, linear)
|
||||||
|
|
||||||
|
# Model parallel
|
||||||
|
self.model_parallel = False
|
||||||
|
self.device_map = None
|
||||||
|
self.cached_mel_emb = None
|
||||||
|
|
||||||
|
def parallelize(self, device_map=None):
|
||||||
|
self.device_map = (
|
||||||
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
||||||
|
if device_map is None
|
||||||
|
else device_map
|
||||||
|
)
|
||||||
|
assert_device_map(self.device_map, len(self.transformer.h))
|
||||||
|
self.transformer.parallelize(self.device_map)
|
||||||
|
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
||||||
|
self.model_parallel = True
|
||||||
|
|
||||||
|
def deparallelize(self):
|
||||||
|
self.transformer.deparallelize()
|
||||||
|
self.transformer = self.transformer.to("cpu")
|
||||||
|
self.lm_head = self.lm_head.to("cpu")
|
||||||
|
self.model_parallel = False
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
def get_output_embeddings(self):
|
||||||
|
return self.lm_head
|
||||||
|
|
||||||
|
def set_output_embeddings(self, new_embeddings):
|
||||||
|
self.lm_head = new_embeddings
|
||||||
|
|
||||||
|
def store_mel_emb(self, mel_emb):
|
||||||
|
self.cached_mel_emb = mel_emb
|
||||||
|
|
||||||
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
||||||
|
|
||||||
|
token_type_ids = kwargs.get("token_type_ids", None)
|
||||||
|
# only last token for inputs_ids if past is defined in kwargs
|
||||||
|
if past:
|
||||||
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||||
|
if token_type_ids is not None:
|
||||||
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||||
|
|
||||||
|
attention_mask = kwargs.get("attention_mask", None)
|
||||||
|
position_ids = kwargs.get("position_ids", None)
|
||||||
|
|
||||||
|
if attention_mask is not None and position_ids is None:
|
||||||
|
# create position_ids on the fly for batch generation
|
||||||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||||
|
if past:
|
||||||
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||||
|
else:
|
||||||
|
position_ids = None
|
||||||
|
return {
|
||||||
|
"input_ids": input_ids,
|
||||||
|
"past_key_values": past,
|
||||||
|
"use_cache": kwargs.get("use_cache"),
|
||||||
|
"position_ids": position_ids,
|
||||||
|
"attention_mask": attention_mask,
|
||||||
|
"token_type_ids": token_type_ids,
|
||||||
|
}
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids=None,
|
||||||
|
past_key_values=None,
|
||||||
|
attention_mask=None,
|
||||||
|
token_type_ids=None,
|
||||||
|
position_ids=None,
|
||||||
|
head_mask=None,
|
||||||
|
inputs_embeds=None,
|
||||||
|
encoder_hidden_states=None,
|
||||||
|
encoder_attention_mask=None,
|
||||||
|
labels=None,
|
||||||
|
use_cache=None,
|
||||||
|
output_attentions=None,
|
||||||
|
output_hidden_states=None,
|
||||||
|
return_dict=None,
|
||||||
|
):
|
||||||
|
assert self.cached_mel_emb is not None
|
||||||
|
assert inputs_embeds is None # Not supported by this inference model.
|
||||||
|
assert labels is None # Training not supported by this inference model.
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
# Create embedding
|
||||||
|
mel_len = self.cached_mel_emb.shape[1]
|
||||||
|
if input_ids.shape[1] != 1:
|
||||||
|
text_inputs = input_ids[:, mel_len:]
|
||||||
|
text_emb = self.embeddings(text_inputs)
|
||||||
|
text_emb = text_emb + self.text_pos_embedding(text_emb)
|
||||||
|
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
|
||||||
|
mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0]//self.cached_mel_emb.shape[0], 0)
|
||||||
|
else:
|
||||||
|
mel_emb = self.cached_mel_emb
|
||||||
|
emb = torch.cat([mel_emb, text_emb], dim=1)
|
||||||
|
else:
|
||||||
|
emb = self.embeddings(input_ids)
|
||||||
|
emb = emb + self.text_pos_embedding.get_fixed_embedding(attention_mask.shape[1]-mel_len, attention_mask.device)
|
||||||
|
|
||||||
|
transformer_outputs = self.transformer(
|
||||||
|
inputs_embeds=emb,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
token_type_ids=token_type_ids,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
encoder_attention_mask=encoder_attention_mask,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
hidden_states = transformer_outputs[0]
|
||||||
|
|
||||||
|
# Set device for model parallelism
|
||||||
|
if self.model_parallel:
|
||||||
|
torch.cuda.set_device(self.transformer.first_device)
|
||||||
|
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
||||||
|
|
||||||
|
lm_logits = self.lm_head(hidden_states)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return (lm_logits,) + transformer_outputs[1:]
|
||||||
|
|
||||||
|
return CausalLMOutputWithCrossAttentions(
|
||||||
|
loss=None,
|
||||||
|
logits=lm_logits,
|
||||||
|
past_key_values=transformer_outputs.past_key_values,
|
||||||
|
hidden_states=transformer_outputs.hidden_states,
|
||||||
|
attentions=transformer_outputs.attentions,
|
||||||
|
cross_attentions=transformer_outputs.cross_attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _reorder_cache(past, beam_idx):
|
||||||
|
"""
|
||||||
|
This function is used to re-order the :obj:`past_key_values` cache if
|
||||||
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||||
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||||
|
"""
|
||||||
|
return tuple(
|
||||||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
||||||
|
for layer_past in past
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class ConditioningEncoder(nn.Module):
|
class ConditioningEncoder(nn.Module):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
spec_dim,
|
spec_dim,
|
||||||
|
@ -275,9 +430,9 @@ class UnifiedVoice(nn.Module):
|
||||||
return loss_mel.mean()
|
return loss_mel.mean()
|
||||||
|
|
||||||
def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs):
|
def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs):
|
||||||
|
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||||
if not hasattr(self, 'inference_model'):
|
if not hasattr(self, 'inference_model'):
|
||||||
# TODO: Decouple gpt_config from this inference model.
|
# TODO: Decouple gpt_config from this inference model.
|
||||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 5
|
|
||||||
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
|
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
|
||||||
n_positions=seq_length,
|
n_positions=seq_length,
|
||||||
n_ctx=seq_length,
|
n_ctx=seq_length,
|
||||||
|
@ -286,7 +441,8 @@ class UnifiedVoice(nn.Module):
|
||||||
n_head=self.heads,
|
n_head=self.heads,
|
||||||
gradient_checkpointing=False,
|
gradient_checkpointing=False,
|
||||||
use_cache=True)
|
use_cache=True)
|
||||||
self.inference_model = GPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.final_norm, self.mel_head)
|
self.inference_model = GPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
|
||||||
|
self.gpt.wte = self.mel_embedding
|
||||||
|
|
||||||
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
||||||
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
||||||
|
@ -301,11 +457,11 @@ class UnifiedVoice(nn.Module):
|
||||||
emb = torch.cat([conds, text_emb], dim=1)
|
emb = torch.cat([conds, text_emb], dim=1)
|
||||||
self.inference_model.store_mel_emb(emb)
|
self.inference_model.store_mel_emb(emb)
|
||||||
|
|
||||||
fake_inputs = torch.full((emb.shape[0], emb.shape[1]+1,), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
fake_inputs = torch.full((emb.shape[0], conds.shape[1]+emb.shape[1],), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
||||||
fake_inputs[:,-1] = self.start_mel_token
|
fake_inputs[:,-1] = self.start_mel_token
|
||||||
|
|
||||||
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
||||||
max_length=self.seq_length, **hf_generate_kwargs)
|
max_length=seq_length, **hf_generate_kwargs)
|
||||||
return gen[:, fake_inputs.shape[1]:]
|
return gen[:, fake_inputs.shape[1]:]
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -80,13 +80,13 @@ def fix_autoregressive_output(codes, stop_token):
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
preselected_cond_voices = {
|
preselected_cond_voices = {
|
||||||
'trump': 'D:\\data\\audio\\sample_voices\\trump.wav',
|
'trump': ['D:\\data\\audio\\sample_voices\\trump.wav'],
|
||||||
'ryan_reynolds': 'D:\\data\\audio\\sample_voices\\ryan_reynolds.wav',
|
'ryan_reynolds': ['D:\\data\\audio\\sample_voices\\ryan_reynolds.wav'],
|
||||||
'ed_sheeran': 'D:\\data\\audio\\sample_voices\\ed_sheeran.wav',
|
'ed_sheeran': ['D:\\data\\audio\\sample_voices\\ed_sheeran.wav'],
|
||||||
'simmons': 'Y:\\clips\\books1\\754_Dan Simmons - The Rise Of Endymion 356 of 450\\00026.wav',
|
'simmons': ['Y:\\clips\\books1\\754_Dan Simmons - The Rise Of Endymion 356 of 450\\00026.wav'],
|
||||||
'news_girl': 'Y:\\clips\\podcasts-0\\8288_20210113-Is More Violence Coming_\\00022.wav',
|
'news_girl': ['Y:\\clips\\podcasts-0\\8288_20210113-Is More Violence Coming_\\00022.wav', 'Y:\\clips\\podcasts-0\\8288_20210113-Is More Violence Coming_\\00016.wav'],
|
||||||
'dan_carlin': 'Y:\\clips\\books1\\5_dchha06 Shield of the West\\00476.wav',
|
'dan_carlin': ['Y:\\clips\\books1\\5_dchha06 Shield of the West\\00476.wav'],
|
||||||
'libri_test': 'Y:\\libritts\\test-clean\\672\\122797\\672_122797_000057_000002.wav'
|
'libri_test': ['Y:\\libritts\\test-clean\\672\\122797\\672_122797_000057_000002.wav']
|
||||||
}
|
}
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
@ -94,17 +94,16 @@ if __name__ == '__main__':
|
||||||
parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator')
|
parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator')
|
||||||
parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae_full\\models\\6100_generator_ema.pth')
|
parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae_full\\models\\6100_generator_ema.pth')
|
||||||
parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae')
|
parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae')
|
||||||
parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_tts_unified\\train_gpt_tts_unified.yml')
|
parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_tts_unified.yml')
|
||||||
parser.add_argument('-gpt_tts_model_name', type=str, help='Name of the GPT TTS model in opt.', default='gpt')
|
parser.add_argument('-gpt_tts_model_name', type=str, help='Name of the GPT TTS model in opt.', default='gpt')
|
||||||
parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_tts_unified\\models\\60000_gpt_ema.pth')
|
parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_tts_unified_large\\models\\40000_gpt_ema.pth')
|
||||||
parser.add_argument('-opt_clip', type=str, help='Path to options YAML file used to train the CLIP model', default='X:\\dlas\\experiments\\train_clip_text_to_voice.yml')
|
parser.add_argument('-opt_clip', type=str, help='Path to options YAML file used to train the CLIP model', default='X:\\dlas\\experiments\\train_clip_text_to_voice.yml')
|
||||||
parser.add_argument('-clip_model_name', type=str, help='Name of the CLIP model in opt.', default='clip')
|
parser.add_argument('-clip_model_name', type=str, help='Name of the CLIP model in opt.', default='clip')
|
||||||
parser.add_argument('-clip_model_path', type=str, help='CLIP model checkpoint to load.', default='X:\\dlas\\experiments\\train_clip_text_to_voice_masking_bigger_batch\\models\\23500_clip_ema.pth')
|
parser.add_argument('-clip_model_path', type=str, help='CLIP model checkpoint to load.', default='X:\\dlas\\experiments\\train_clip_text_to_voice_masking_bigger_batch\\models\\23500_clip_ema.pth')
|
||||||
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||||
parser.add_argument('-cond_path', type=str, help='Path to condioning sample.', default='')
|
|
||||||
parser.add_argument('-cond_preset', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='libri_test')
|
parser.add_argument('-cond_preset', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='libri_test')
|
||||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
||||||
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=2)
|
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=8)
|
||||||
parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2)
|
parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2)
|
||||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='../results/use_gpt_tts')
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='../results/use_gpt_tts')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
@ -115,7 +114,7 @@ if __name__ == '__main__':
|
||||||
with open(args.opt_gpt_tts, mode='r') as f:
|
with open(args.opt_gpt_tts, mode='r') as f:
|
||||||
gpt_opt = yaml.load(f, Loader=Loader)
|
gpt_opt = yaml.load(f, Loader=Loader)
|
||||||
gpt_opt['networks'][args.gpt_tts_model_name]['kwargs']['checkpointing'] = False # Required for beam search
|
gpt_opt['networks'][args.gpt_tts_model_name]['kwargs']['checkpointing'] = False # Required for beam search
|
||||||
gpt = load_model_from_config(preloaded_options=gpt_opt, model_name=args.gpt_tts_model_name, also_load_savepoint=False, load_path=args.gpt_tts_model_path, strict_load=False).eval()
|
gpt = load_model_from_config(preloaded_options=gpt_opt, model_name=args.gpt_tts_model_name, also_load_savepoint=False, load_path=args.gpt_tts_model_path).eval()
|
||||||
stop_mel_token = gpt.stop_mel_token
|
stop_mel_token = gpt.stop_mel_token
|
||||||
|
|
||||||
print("Loading data..")
|
print("Loading data..")
|
||||||
|
@ -123,8 +122,12 @@ if __name__ == '__main__':
|
||||||
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
||||||
text = F.pad(text, (0,1)) # This may not be necessary.
|
text = F.pad(text, (0,1)) # This may not be necessary.
|
||||||
|
|
||||||
cond_path = args.cond_path if args.cond_preset is None else preselected_cond_voices[args.cond_preset]
|
cond_paths = preselected_cond_voices[args.cond_preset]
|
||||||
conds, cond_wav = load_conditioning(cond_path, cond_length=88000)
|
conds = []
|
||||||
|
for cond_path in cond_paths:
|
||||||
|
c, cond_wav = load_conditioning(cond_path, cond_length=132300)
|
||||||
|
conds.append(c)
|
||||||
|
conds = torch.stack(conds, dim=1) # And just use the last cond_wav for the diffusion model.
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
print("Performing GPT inference..")
|
print("Performing GPT inference..")
|
||||||
|
|
Loading…
Reference in New Issue
Block a user