forked from mrq/DL-Art-School
Update tts9: Remove torchscript provisions and add mechanism to train solely on codes
This commit is contained in:
parent
726e30c4f7
commit
e6a95f7c11
|
@ -59,16 +59,18 @@ class CheckpointedXTransformerEncoder(nn.Module):
|
|||
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
||||
to channels-last that XTransformer expects.
|
||||
"""
|
||||
def __init__(self, **xtransformer_kwargs):
|
||||
def __init__(self, needs_permute=True, **xtransformer_kwargs):
|
||||
super().__init__()
|
||||
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
||||
self.needs_permute = needs_permute
|
||||
|
||||
for i in range(len(self.transformer.attn_layers.layers)):
|
||||
n, b, r = self.transformer.attn_layers.layers[i]
|
||||
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
x = x.permute(0,2,1)
|
||||
if self.needs_permute:
|
||||
x = x.permute(0,2,1)
|
||||
h = self.transformer(x, **kwargs)
|
||||
return h.permute(0,2,1)
|
||||
|
||||
|
|
|
@ -6,16 +6,25 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
from x_transformers import Encoder
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
||||
Downsample, Upsample, TimestepBlock
|
||||
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
||||
from models.gpt_voice.unet_diffusion_tts7 import CheckpointedXTransformerEncoder
|
||||
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, opt_get
|
||||
|
||||
|
||||
def is_latent(t):
|
||||
return t.dtype == torch.float
|
||||
|
||||
def is_sequence(t):
|
||||
return t.dtype == torch.long
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -115,9 +124,10 @@ class DiffusionTts(nn.Module):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
model_channels=1024,
|
||||
model_channels,
|
||||
in_channels=1,
|
||||
in_latent_channels=1024,
|
||||
in_tokens=8193,
|
||||
out_channels=2, # mean and variance
|
||||
dropout=0,
|
||||
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
||||
|
@ -141,6 +151,7 @@ class DiffusionTts(nn.Module):
|
|||
# Parameters for super-sampling.
|
||||
super_sampling=False,
|
||||
super_sampling_max_noising_factor=.1,
|
||||
jit_enabled=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -164,6 +175,8 @@ class DiffusionTts(nn.Module):
|
|||
self.super_sampling_max_noising_factor = super_sampling_max_noising_factor
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
self.jit_enabled = jit_enabled
|
||||
self.jit_forward = None
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
time_embed_dim = model_channels * time_embed_dim_multiplier
|
||||
|
@ -174,6 +187,27 @@ class DiffusionTts(nn.Module):
|
|||
)
|
||||
|
||||
conditioning_dim = model_channels * 8
|
||||
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
|
||||
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
|
||||
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
|
||||
# transformer network.
|
||||
self.code_converter = nn.Sequential(
|
||||
nn.Embedding(in_tokens, conditioning_dim),
|
||||
CheckpointedXTransformerEncoder(
|
||||
needs_permute=False,
|
||||
max_seq_len=-1,
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=conditioning_dim,
|
||||
depth=3,
|
||||
heads=num_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_emb_dim=True,
|
||||
)
|
||||
))
|
||||
self.latent_converter = nn.Conv1d(in_latent_channels, conditioning_dim, 1)
|
||||
self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,in_latent_channels,1))
|
||||
self.contextual_embedder = AudioMiniEncoder(1, conditioning_dim, base_channels=32, depth=6, resnet_blocks=1,
|
||||
|
@ -315,80 +349,30 @@ class DiffusionTts(nn.Module):
|
|||
}
|
||||
return groups
|
||||
|
||||
|
||||
def forward(self, x, timesteps, aligned_latent, conditioning_input, conditioning_free):
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
||||
else:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
code_emb = self.latent_converter(aligned_latent)
|
||||
cond_emb = cond_emb.unsqueeze(-1).repeat(1,1,code_emb.shape[-1])
|
||||
code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0],1,1), device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1), code_emb)
|
||||
|
||||
# Everything after this comment is timestep dependent.
|
||||
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
|
||||
|
||||
time_emb = time_emb.float()
|
||||
h = x
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
|
||||
# Last block also has autocast disabled for high-precision outputs.
|
||||
h = h.float()
|
||||
out = self.out(h)
|
||||
return out
|
||||
|
||||
|
||||
class DiffusionTtsWrapper(nn.Module):
|
||||
"""
|
||||
Wraps the above module with some set-up logic such that the above module can be traced by the PyTorch JIT.
|
||||
"""
|
||||
def __init__(self, jit_enabled=False, **kwargs):
|
||||
super().__init__()
|
||||
self.jit_enabled = jit_enabled
|
||||
self.jit_forward = None
|
||||
self.underlying = DiffusionTts(**kwargs)
|
||||
|
||||
def forward(self, x, timesteps, aligned_latent, conditioning_input, lr_input=None, conditioning_free=False):
|
||||
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, lr_input=None, conditioning_free=False):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param aligned_latent: an aligned latent providing useful data about the sample to be produced.
|
||||
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
|
||||
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
|
||||
:param lr_input: for super-sampling models, a guidance audio clip at a lower sampling rate.
|
||||
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert conditioning_input is not None
|
||||
if self.underlying.super_sampling_enabled:
|
||||
if self.super_sampling_enabled:
|
||||
assert lr_input is not None
|
||||
if self.training and self.super_sampling_max_noising_factor > 0:
|
||||
noising_factor = random.uniform(0,self.underlying.super_sampling_max_noising_factor)
|
||||
noising_factor = random.uniform(0,self.super_sampling_max_noising_factor)
|
||||
lr_input = torch.randn_like(lr_input) * noising_factor + lr_input
|
||||
lr_input = F.interpolate(lr_input, size=(x.shape[-1],), mode='nearest')
|
||||
x = torch.cat([x, lr_input], dim=1)
|
||||
|
||||
# Shuffle aligned_latent to BxCxS format
|
||||
aligned_latent = aligned_latent.permute(0,2,1)
|
||||
if is_latent(aligned_conditioning):
|
||||
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
||||
|
||||
# Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net.
|
||||
orig_x_shape = x.shape[-1]
|
||||
|
@ -397,30 +381,83 @@ class DiffusionTtsWrapper(nn.Module):
|
|||
pc = (cm-x.shape[-1])/x.shape[-1]
|
||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
||||
# Also fix aligned_latent, which is aligned to x.
|
||||
aligned_latent = torch.cat([aligned_latent,
|
||||
self.underlying.aligned_latent_padding_embedding.repeat(x.shape[0],1,int(pc*aligned_latent.shape[-1]))], dim=-1)
|
||||
|
||||
with autocast(x.device.type, enabled=self.underlying.enable_fp16):
|
||||
if self.jit_enabled:
|
||||
if self.jit_forward is None:
|
||||
self.jit_forward = torch.jit.script(self.underlying, (x, timesteps, aligned_latent, conditioning_input, conditioning_free))
|
||||
out = self.jit_forward(x, timesteps, aligned_latent, conditioning_input, conditioning_free)
|
||||
if is_latent(aligned_conditioning):
|
||||
aligned_conditioning = torch.cat([aligned_conditioning,
|
||||
self.aligned_latent_padding_embedding.repeat(x.shape[0], 1, int(pc * aligned_conditioning.shape[-1]))], dim=-1)
|
||||
else:
|
||||
out = self.underlying(x, timesteps, aligned_latent, conditioning_input, conditioning_free)
|
||||
aligned_conditioning = F.pad(aligned_conditioning, (0,int(pc*aligned_conditioning.shape[-1])))
|
||||
|
||||
with autocast(x.device.type, enabled=self.enable_fp16):
|
||||
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
||||
else:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
if is_latent(aligned_conditioning):
|
||||
code_emb = self.latent_converter(aligned_conditioning)
|
||||
else:
|
||||
code_emb = self.code_converter(aligned_conditioning)
|
||||
cond_emb = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
|
||||
code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
||||
device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
|
||||
code_emb)
|
||||
|
||||
# Everything after this comment is timestep dependent.
|
||||
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
|
||||
|
||||
first = True
|
||||
time_emb = time_emb.float()
|
||||
h = x
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
with autocast(x.device.type, enabled=self.enable_fp16 and not first):
|
||||
# First block has autocast disabled to allow a high precision signal to be properly vectorized.
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
first = False
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
|
||||
# Last block also has autocast disabled for high-precision outputs.
|
||||
h = h.float()
|
||||
out = self.out(h)
|
||||
|
||||
return out[:, :, :orig_x_shape]
|
||||
|
||||
|
||||
@register_model
|
||||
def register_diffusion_tts9(opt_net, opt):
|
||||
return DiffusionTtsWrapper(**opt_net['kwargs'])
|
||||
return DiffusionTts(**opt_net['kwargs'])
|
||||
|
||||
@register_model
|
||||
def register_traced_diffusion_tts9(opt_net, opt):
|
||||
# Cannot use branching logic when training with torchscript.
|
||||
assert(opt_get(opt_net['kwargs'], ['unconditioned_percentage'], 0) == 0)
|
||||
model = DiffusionTts(**opt_net['kwargs'])
|
||||
model = torch.jit.trace(model, example_inputs=(torch.randn(2,1,32868), torch.LongTensor([600,600]), torch.randn(2,388,1024),torch.randn(2,1,44000)))
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 1, 32868)
|
||||
aligned_latent = torch.randn(2,388,1024)
|
||||
aligned_sequence = torch.randint(0,8192,(2,388))
|
||||
cond = torch.randn(2, 1, 44000)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = DiffusionTtsWrapper(128,
|
||||
model = DiffusionTts(128,
|
||||
channel_mult=[1,1.5,2, 3, 4, 6, 8],
|
||||
num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
|
||||
token_conditioning_resolutions=[1,4,16,64],
|
||||
|
@ -430,5 +467,8 @@ if __name__ == '__main__':
|
|||
scale_factor=2,
|
||||
time_embed_dim_multiplier=4,
|
||||
super_sampling=False)
|
||||
# Test with latent aligned conditioning
|
||||
o = model(clip, ts, aligned_latent, cond)
|
||||
# Test with sequence aligned conditioning
|
||||
o = model(clip, ts, aligned_sequence, cond)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user