diff --git a/codes/sweep.py b/codes/sweep.py index fed3ecd9..67ad658d 100644 --- a/codes/sweep.py +++ b/codes/sweep.py @@ -34,16 +34,16 @@ if __name__ == '__main__': Ad-hoc script (hard coded; no command-line parameters) that spawns multiple separate trainers from a single options file, with a hard-coded set of modifications. """ - base_opt = '../experiments/train_diffusion_tts6.yml' + base_opt = '../experiments/train_diffusion_tts9_sweep.yml' modifications = { 'baseline': {}, - 'only_conv': {'networks': {'generator': {'kwargs': {'cond_transformer_depth': 4, 'mid_transformer_depth': 1}}}}, - 'intermediary_attention': {'networks': {'generator': {'kwargs': {'attention_resolutions': [32,64], 'num_res_blocks': [2, 2, 2, 2, 2, 2, 2]}}}}, - 'more_resblocks': {'networks': {'generator': {'kwargs': {'num_res_blocks': [3, 3, 3, 3, 3, 3, 2]}}}}, - 'less_resblocks': {'networks': {'generator': {'kwargs': {'num_res_blocks': [1, 1, 1, 1, 1, 1, 1]}}}}, - 'wider': {'networks': {'generator': {'kwargs': {'channel_mult': [1,2,4,6,8,8,8]}}}}, - 'inject_every_layer': {'networks': {'generator': {'kwargs': {'token_conditioning_resolutions': [1,2,4,8,16,32,64]}}}}, - 'cosine_diffusion': {'steps': {'generator': {'injectors': {'diffusion': {'beta_schedule': {'schedule_name': 'cosine'}}}}}}, + 'more_filters': {'networks': {'generator': {'kwargs': {'model_channels': 96}}}}, + 'more_kern': {'networks': {'generator': {'kwargs': {'kernel_size': 5}}}}, + 'less_heads': {'networks': {'generator': {'kwargs': {'num_heads': 2}}}}, + 'eff_off': {'networks': {'generator': {'kwargs': {'efficient_convs': False}}}}, + 'more_time': {'networks': {'generator': {'kwargs': {'time_embed_dim_multiplier': 8}}}}, + 'deeper_res': {'networks': {'generator': {'kwargs': {'num_res_blocks': [3, 3, 3, 3, 3, 4, 4]}}}}, + 'shallow_res': {'networks': {'generator': {'kwargs': {'num_res_blocks': [1, 1, 1, 1, 1, 2, 2]}}}}, } opt = option.parse(base_opt, is_train=True) all_opts = []