diff --git a/codes/scripts/audio/prep_music/demucs_notes.txt b/codes/scripts/audio/prep_music/demucs_notes.txt index 1c37b7df..064e791f 100644 --- a/codes/scripts/audio/prep_music/demucs_notes.txt +++ b/codes/scripts/audio/prep_music/demucs_notes.txt @@ -4,5 +4,5 @@ https://github.com/neonbjb/demucs ``` conda activate demucs python setup.py install -CUDA_VISIBLE_DEVICES=0 python -m demucs /y/split/bt-music-5 --out=/y/separated/bt-music-5 --num_workers=2 --device cuda +CUDA_VISIBLE_DEVICES=0 python -m demucs /y/split/bt-music-5 --out=/y/separated/bt-music-5 --num_workers=2 --device cuda --two-stems=vocals ``` \ No newline at end of file diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py index 3264018d..afe6a221 100644 --- a/codes/trainer/eval/music_diffusion_fid.py +++ b/codes/trainer/eval/music_diffusion_fid.py @@ -13,12 +13,14 @@ from tqdm import tqdm import trainer.eval.evaluator as evaluator from data.audio.unsupervised_audio_dataset import load_audio +from models.audio.mel2vec import ContrastiveTrainingWrapper from models.audio.music.unet_diffusion_waveform_gen import DiffusionWaveformGen from models.clip.contrastive_audio import ContrastiveAudio from models.diffusion.gaussian_diffusion import get_named_beta_schedule from models.diffusion.respace import space_timesteps, SpacedDiffusion from trainer.injectors.audio_injectors import denormalize_mel, TorchMelSpectrogramInjector, pixel_shuffle_1d, \ normalize_mel +from utils.music_utils import get_music_codegen, get_mel2wav_model from utils.util import opt_get, load_model_from_config @@ -47,11 +49,7 @@ class MusicDiffusionFid(evaluator.Evaluator): self.dev = self.env['device'] mode = opt_get(opt_eval, ['diffusion_type'], 'tts') - self.spec_decoder = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, - channel_mult=[1,2,3,4], num_res_blocks=[3,3,3,3], token_conditioning_resolutions=[1,4], - num_heads=8, - dropout=0, kernel_size=3, scale_factor=2, time_embed_dim_multiplier=4, unconditioned_percentage=0) - self.spec_decoder.load_state_dict(torch.load('../experiments/music_waveform_gen.pth', map_location=torch.device('cpu'))) + self.spec_decoder = get_mel2wav_model() self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256) self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu'))) self.local_modules = {'spec_decoder': self.spec_decoder, 'projector': self.projector} @@ -66,6 +64,9 @@ class MusicDiffusionFid(evaluator.Evaluator): self.gap_gen_fn = self.gen_time_gap elif 'rerender' in mode: self.diffusion_fn = self.perform_rerender + elif 'from_codes' == mode: + self.diffusion_fn = self.perform_diffusion_from_codes + self.local_modules['codegen'] = get_music_codegen() self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {}) def load_data(self, path): @@ -154,6 +155,29 @@ class MusicDiffusionFid(evaluator.Evaluator): return gen, real_resampled, normalize_mel(spec), mel, sample_rate + def perform_diffusion_from_codes(self, audio, sample_rate=22050): + if sample_rate != sample_rate: + real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0) + else: + real_resampled = audio + audio = audio.unsqueeze(0) + + # Fetch the MEL and mask out the requested bands. + mel = self.spec_fn({'in': audio})['out'] + codegen = self.local_modules['codegen'].to(mel.device) + codes = codegen.get_codes(mel) + mel_norm = normalize_mel(mel) + gen_mel = self.diffuser.p_sample_loop(self.model, mel_norm.shape, model_kwargs={'aligned_conditioning': codes, 'conditioning_input': mel[:,:,:117]}) + + gen_mel_denorm = denormalize_mel(gen_mel) + output_shape = (1,16,audio.shape[-1]//16) + self.spec_decoder = self.spec_decoder.to(audio.device) + gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, model_kwargs={'aligned_conditioning': gen_mel_denorm}) + gen_wav = pixel_shuffle_1d(gen_wav, 16) + + return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate + + def project(self, sample, sample_rate): sample = torchaudio.functional.resample(sample, sample_rate, 22050) mel = self.spec_fn({'in': sample})['out'] @@ -217,12 +241,12 @@ class MusicDiffusionFid(evaluator.Evaluator): if __name__ == '__main__': - diffusion = load_model_from_config('D:\\dlas\\options\\train_music_waveform_gen3.yml', 'generator', + diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_flat.yml', 'generator', also_load_savepoint=False, - load_path='X:\\dlas\\experiments\\train_music_waveform_gen\\models\\75500_generator_ema.pth').cuda() - opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 400, + load_path='X:\\dlas\\experiments\\train_music_diffusion_flat\\models\\26000_generator.pth').cuda() + opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 100, 'conditioning_free': False, 'conditioning_free_k': 1, - 'diffusion_schedule': 'linear', 'diffusion_type': 'spec_decode'} - env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 23, 'device': 'cuda', 'opt': {}} + 'diffusion_schedule': 'linear', 'diffusion_type': 'from_codes'} + env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 25, 'device': 'cuda', 'opt': {}} eval = MusicDiffusionFid(diffusion, opt_eval, env) print(eval.perform_eval()) diff --git a/codes/utils/music_utils.py b/codes/utils/music_utils.py new file mode 100644 index 00000000..64d26f20 --- /dev/null +++ b/codes/utils/music_utils.py @@ -0,0 +1,20 @@ +import torch + +from models.audio.mel2vec import ContrastiveTrainingWrapper +from models.audio.music.unet_diffusion_waveform_gen_simple import DiffusionWaveformGen + + +def get_mel2wav_model(): + model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1,2,3,4,4], + num_res_blocks=[3,3,2,2,1], token_conditioning_resolutions=[1,4,16], dropout=0, kernel_size=3, scale_factor=2, + time_embed_dim_multiplier=4, unconditioned_percentage=0) + model.load_state_dict(torch.load("../experiments/music_mel2wav.pth", map_location=torch.device('cpu'))) + model.eval() + return model + +def get_music_codegen(): + model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0, mask_time_prob=0, + mask_time_length=6, num_negatives=100, codebook_size=8, codebook_groups=8, disable_custom_linear_init=True) + model.load_state_dict(torch.load("../experiments/m2v_music.pth", map_location=torch.device('cpu'))) + model.eval() + return model \ No newline at end of file