forked from mrq/DL-Art-School
Fix LQGT_dataset, add full_image_dataset
This commit is contained in:
parent
5ec04aedc8
commit
f224907603
|
@ -218,8 +218,9 @@ class LQGTDataset(data.Dataset):
|
|||
if img_GAN is not None:
|
||||
img_GAN = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GAN, (2, 0, 1)))).float()
|
||||
|
||||
lq_noise = torch.randn_like(img_LQ) * self.opt['lq_noise'] / 255
|
||||
img_LQ += lq_noise
|
||||
if 'lq_noise' in self.opt.keys():
|
||||
lq_noise = torch.randn_like(img_LQ) * self.opt['lq_noise'] / 255
|
||||
img_LQ += lq_noise
|
||||
|
||||
if LQ_path is None:
|
||||
LQ_path = GT_path
|
||||
|
|
267
codes/data/full_image_dataset.py
Normal file
267
codes/data/full_image_dataset.py
Normal file
|
@ -0,0 +1,267 @@
|
|||
import random
|
||||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
import data.util as util
|
||||
from PIL import Image, ImageOps
|
||||
from io import BytesIO
|
||||
import torchvision.transforms.functional as F
|
||||
|
||||
|
||||
# Reads full-quality images and pulls tiles from them. Also extracts LR renderings of the full image with cues as to
|
||||
# where those tiles came from.
|
||||
class FullImageDataset(data.Dataset):
|
||||
"""
|
||||
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, etc) and GT image pairs.
|
||||
If only GT images are provided, generate LQ images on-the-fly.
|
||||
"""
|
||||
def get_lq_path(self, i):
|
||||
which_lq = random.randint(0, len(self.paths_LQ)-1)
|
||||
return self.paths_LQ[which_lq][i % len(self.paths_LQ[which_lq])]
|
||||
|
||||
def __init__(self, opt):
|
||||
super(FullImageDataset, self).__init__()
|
||||
self.opt = opt
|
||||
self.data_type = 'img'
|
||||
self.paths_LQ, self.paths_GT = None, None
|
||||
self.sizes_LQ, self.sizes_GT = None, None
|
||||
self.LQ_env, self.GT_env = None, None
|
||||
self.force_multiple = self.opt['force_multiple'] if 'force_multiple' in self.opt.keys() else 1
|
||||
|
||||
self.paths_GT, self.sizes_GT = util.get_image_paths(self.data_type, opt['dataroot_GT'], opt['dataroot_GT_weights'])
|
||||
if 'dataroot_LQ' in opt.keys():
|
||||
self.paths_LQ = []
|
||||
if isinstance(opt['dataroot_LQ'], list):
|
||||
# Multiple LQ data sources can be given, in case there are multiple ways of corrupting a source image and
|
||||
# we want the model to learn them all.
|
||||
for dr_lq in opt['dataroot_LQ']:
|
||||
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, dr_lq)
|
||||
self.paths_LQ.append(lq_path)
|
||||
else:
|
||||
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
|
||||
self.paths_LQ.append(lq_path)
|
||||
|
||||
assert self.paths_GT, 'Error: GT path is empty.'
|
||||
self.random_scale_list = [1]
|
||||
|
||||
def motion_blur(self, image, size, angle):
|
||||
k = np.zeros((size, size), dtype=np.float32)
|
||||
k[(size - 1) // 2, :] = np.ones(size, dtype=np.float32)
|
||||
k = cv2.warpAffine(k, cv2.getRotationMatrix2D((size / 2 - 0.5, size / 2 - 0.5), angle, 1.0), (size, size))
|
||||
k = k * (1.0 / np.sum(k))
|
||||
return cv2.filter2D(image, -1, k)
|
||||
|
||||
# Selects the smallest dimension from the image and crops it randomly so the other dimension matches. The cropping
|
||||
# offset from center is chosen on a normal probability curve.
|
||||
def get_square_image(self, image):
|
||||
h, w, _ = image.shape
|
||||
if h == w:
|
||||
return image
|
||||
offset = min(np.random.normal(scale=.3), 1.0)
|
||||
if h > w:
|
||||
diff = h - w
|
||||
center = diff // 2
|
||||
top = int(center + offset * (center - 2))
|
||||
return image[top:top+w, :, :]
|
||||
else:
|
||||
diff = w - h
|
||||
center = diff // 2
|
||||
left = int(center + offset * (center - 2))
|
||||
return image[:, left:left+h, :]
|
||||
|
||||
def pick_along_range(self, sz, r, dev):
|
||||
margin_sz = sz - r
|
||||
margin_center = margin_sz // 2
|
||||
return min(max(int(min(np.random.normal(scale=dev), 1.0) * margin_sz + margin_center), 0), margin_sz)
|
||||
|
||||
# - Randomly extracts a square from image and resizes it to opt['target_size'].
|
||||
# - Fills a mask with zeros, then places 1's where the square was extracted from. Resizes this mask and the source
|
||||
# image to the target_size and returns that too.
|
||||
# Notes:
|
||||
# - When extracting a square, the size of the square is randomly distributed [target_size, source_size] along a
|
||||
# half-normal distribution, biasing towards the target_size.
|
||||
# - A biased normal distribution is also used to bias the tile selection towards the center of the source image.
|
||||
def pull_tile(self, image):
|
||||
target_sz = self.opt['target_size']
|
||||
h, w, _ = image.shape
|
||||
possible_sizes_above_target = h - target_sz
|
||||
square_size = int(target_sz + possible_sizes_above_target * min(np.abs(np.random.normal(scale=.1)), 1.0))
|
||||
print("Square size: %i" % (square_size,))
|
||||
# Pick the left,top coords to draw the patch from
|
||||
left = self.pick_along_range(w, square_size, .3)
|
||||
top = self.pick_along_range(w, square_size, .3)
|
||||
|
||||
mask = np.zeros((h, w, 1), dtype=np.float)
|
||||
mask[top:top+square_size, left:left+square_size] = 1
|
||||
patch = image[top:top+square_size, left:left+square_size, :]
|
||||
|
||||
patch = cv2.resize(patch, (target_sz, target_sz), interpolation=cv2.INTER_LINEAR)
|
||||
image = cv2.resize(image, (target_sz, target_sz), interpolation=cv2.INTER_LINEAR)
|
||||
mask = cv2.resize(mask, (target_sz, target_sz), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
return patch, image, mask
|
||||
|
||||
def augment_tile(self, img_GT, img_LQ, strength=1):
|
||||
scale = self.opt['scale']
|
||||
GT_size = self.opt['target_size']
|
||||
|
||||
H, W, _ = img_GT.shape
|
||||
assert H >= GT_size and W >= GT_size
|
||||
|
||||
LQ_size = GT_size // scale
|
||||
img_LQ = cv2.resize(img_LQ, (LQ_size, LQ_size), interpolation=cv2.INTER_LINEAR)
|
||||
img_GT = cv2.resize(img_GT, (GT_size, GT_size), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
if self.opt['use_blurring']:
|
||||
# Pick randomly between gaussian, motion, or no blur.
|
||||
blur_det = random.randint(0, 100)
|
||||
blur_magnitude = 3 if 'blur_magnitude' not in self.opt.keys() else self.opt['blur_magnitude']
|
||||
blur_magnitude = max(1, int(blur_magnitude*strength))
|
||||
if blur_det < 40:
|
||||
blur_sig = int(random.randrange(0, int(blur_magnitude)))
|
||||
img_LQ = cv2.GaussianBlur(img_LQ, (blur_magnitude, blur_magnitude), blur_sig)
|
||||
elif blur_det < 70:
|
||||
img_LQ = self.motion_blur(img_LQ, random.randrange(1, int(blur_magnitude) * 3), random.randint(0, 360))
|
||||
|
||||
return img_GT, img_LQ
|
||||
|
||||
# Converts img_LQ to PIL and performs JPG compression corruptions and grayscale on the image, then returns it.
|
||||
def pil_augment(self, img_LQ, strength=1):
|
||||
img_LQ = (img_LQ * 255).astype(np.uint8)
|
||||
img_LQ = Image.fromarray(img_LQ)
|
||||
if self.opt['use_compression_artifacts'] and random.random() > .25:
|
||||
sub_lo = 90 * strength
|
||||
sub_hi = 30 * strength
|
||||
qf = random.randrange(100 - sub_lo, 100 - sub_hi)
|
||||
corruption_buffer = BytesIO()
|
||||
img_LQ.save(corruption_buffer, "JPEG", quality=qf, optimice=True)
|
||||
corruption_buffer.seek(0)
|
||||
img_LQ = Image.open(corruption_buffer)
|
||||
|
||||
if 'grayscale' in self.opt.keys() and self.opt['grayscale']:
|
||||
img_LQ = ImageOps.grayscale(img_LQ).convert('RGB')
|
||||
|
||||
return img_LQ
|
||||
|
||||
def __getitem__(self, index):
|
||||
GT_path, LQ_path = None, None
|
||||
scale = self.opt['scale']
|
||||
GT_size = self.opt['target_size']
|
||||
|
||||
# get full size image
|
||||
full_path = self.paths_GT[index % len(self.paths_GT)]
|
||||
img_full = util.read_img(None, full_path, None)
|
||||
img_full = util.augment([img_full], self.opt['use_flip'], self.opt['use_rot'])[0]
|
||||
img_full = self.get_square_image(img_full)
|
||||
img_GT, gt_fullsize_ref, gt_mask = self.pull_tile(img_full)
|
||||
|
||||
# get LQ image
|
||||
if self.paths_LQ:
|
||||
LQ_path = self.get_lq_path(index)
|
||||
img_lq_full = util.read_img(None, LQ_path, None)
|
||||
img_lq_full = util.augment([img_lq_full], self.opt['use_flip'], self.opt['use_rot'])[0]
|
||||
img_lq_full = self.get_square_image(img_lq_full)
|
||||
img_LQ, lq_fullsize_ref, lq_mask = self.pull_tile(img_lq_full)
|
||||
else: # down-sampling on-the-fly
|
||||
# randomly scale during training
|
||||
if self.opt['phase'] == 'train':
|
||||
random_scale = random.choice(self.random_scale_list)
|
||||
H_s, W_s, _ = img_GT.shape
|
||||
|
||||
def _mod(n, random_scale, scale, thres):
|
||||
rlt = int(n * random_scale)
|
||||
rlt = (rlt // scale) * scale
|
||||
return thres if rlt < thres else rlt
|
||||
|
||||
H_s = _mod(H_s, random_scale, scale, GT_size)
|
||||
W_s = _mod(W_s, random_scale, scale, GT_size)
|
||||
img_GT = cv2.resize(img_GT, (W_s, H_s), interpolation=cv2.INTER_LINEAR)
|
||||
if img_GT.ndim == 2:
|
||||
img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
H, W, _ = img_GT.shape
|
||||
|
||||
# using matlab imresize
|
||||
img_LQ = util.imresize_np(img_GT, 1 / scale, True)
|
||||
if img_LQ.ndim == 2:
|
||||
img_LQ = np.expand_dims(img_LQ, axis=2)
|
||||
lq_fullsize_ref, lq_mask = gt_fullsize_ref, gt_mask
|
||||
|
||||
# Enforce force_resize constraints.
|
||||
h, w, _ = img_LQ.shape
|
||||
if h % self.force_multiple != 0 or w % self.force_multiple != 0:
|
||||
h, w = (w - w % self.force_multiple), (h - h % self.force_multiple)
|
||||
img_LQ = cv2.resize(img_LQ, (h, w))
|
||||
h *= scale
|
||||
w *= scale
|
||||
img_GT = cv2.resize(img_GT, (h, w))
|
||||
|
||||
if self.opt['phase'] == 'train':
|
||||
img_GT, img_LQ = self.augment_tile(img_GT, img_LQ)
|
||||
gt_fullsize_ref, lq_fullsize_ref = self.augment_tile(gt_fullsize_ref, lq_fullsize_ref, strength=.2)
|
||||
lq_mask = cv2.resize(lq_mask, img_LQ.shape[0:2], interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# BGR to RGB, HWC to CHW, numpy to tensor
|
||||
if img_GT.shape[2] == 3:
|
||||
img_GT = cv2.cvtColor(img_GT, cv2.COLOR_BGR2RGB)
|
||||
img_LQ = cv2.cvtColor(img_LQ, cv2.COLOR_BGR2RGB)
|
||||
lq_fullsize_ref = cv2.cvtColor(lq_fullsize_ref, cv2.COLOR_BGR2RGB)
|
||||
gt_fullsize_ref = cv2.cvtColor(gt_fullsize_ref, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# LQ needs to go to a PIL image to perform the compression-artifact transformation.
|
||||
img_LQ = self.pil_augment(img_LQ)
|
||||
lq_fullsize_ref = self.pil_augment(lq_fullsize_ref, strength=.2)
|
||||
|
||||
img_GT = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float()
|
||||
gt_fullsize_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(gt_fullsize_ref, (2, 0, 1)))).float()
|
||||
img_LQ = F.to_tensor(img_LQ)
|
||||
lq_fullsize_ref = F.to_tensor(lq_fullsize_ref)
|
||||
lq_mask = torch.from_numpy(np.ascontiguousarray(lq_mask)).unsqueeze(dim=0)
|
||||
gt_mask = torch.from_numpy(np.ascontiguousarray(gt_mask)).unsqueeze(dim=0)
|
||||
|
||||
if 'lq_noise' in self.opt.keys():
|
||||
lq_noise = torch.randn_like(img_LQ) * self.opt['lq_noise'] / 255
|
||||
img_LQ += lq_noise
|
||||
lq_fullsize_ref += lq_noise
|
||||
|
||||
# Apply the masks to the full images.
|
||||
lq_fullsize_ref = torch.cat([lq_fullsize_ref, lq_mask], dim=0)
|
||||
gt_fullsize_ref = torch.cat([gt_fullsize_ref, gt_mask], dim=0)
|
||||
|
||||
if LQ_path is None:
|
||||
LQ_path = GT_path
|
||||
d = {'LQ': img_LQ, 'GT': img_GT, 'gt_fullsize_ref': gt_fullsize_ref, 'lq_fullsize_ref': lq_fullsize_ref,
|
||||
'LQ_path': LQ_path, 'GT_path': GT_path}
|
||||
return d
|
||||
|
||||
def __len__(self):
|
||||
return len(self.paths_GT)
|
||||
|
||||
if __name__ == '__main__':
|
||||
opt = {
|
||||
'name': 'amalgam',
|
||||
'dataroot_GT': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\images'],
|
||||
'dataroot_GT_weights': [1],
|
||||
'use_flip': True,
|
||||
'use_compression_artifacts': True,
|
||||
'use_blurring': True,
|
||||
'use_rot': True,
|
||||
'lq_noise': 5,
|
||||
'target_size': 128,
|
||||
'scale': 2,
|
||||
'phase': 'train'
|
||||
}
|
||||
ds = FullImageDataset(opt)
|
||||
import os
|
||||
os.makedirs("debug", exist_ok=True)
|
||||
for i in range(1000):
|
||||
o = ds[i]
|
||||
for k, v in o.items():
|
||||
if 'path' not in k:
|
||||
if 'full' in k:
|
||||
masked = v[:3, :, :] * v[3]
|
||||
torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k))
|
||||
v = v[:3, :, :]
|
||||
import torchvision
|
||||
torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))
|
|
@ -20,12 +20,12 @@ def main():
|
|||
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
|
||||
# compression time. If read raw images during training, use 0 for faster IO speed.
|
||||
if mode == 'single':
|
||||
opt['input_folder'] = 'F:\\4k6k\\datasets\\flickr2k\\Flickr2K_HR'
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\flickr2k\\1024px'
|
||||
opt['crop_sz'] = 1024 # the size of each sub-image
|
||||
opt['step'] = 880 # step of the sliding crop window
|
||||
opt['thres_sz'] = 240 # size threshold
|
||||
opt['resize_final_img'] = 1
|
||||
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\images'
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\square_context'
|
||||
opt['crop_sz'] = 4096 # the size of each sub-image
|
||||
opt['step'] = 4096 # step of the sliding crop window
|
||||
opt['thres_sz'] = 256 # size threshold
|
||||
opt['resize_final_img'] = .5
|
||||
opt['only_resize'] = False
|
||||
extract_single(opt, split_img)
|
||||
elif mode == 'pair':
|
||||
|
@ -93,6 +93,8 @@ def extract_single(opt, split_img=False):
|
|||
|
||||
pool = Pool(opt['n_thread'])
|
||||
for path in img_list:
|
||||
# If this fails, change it and the imwrite below to the write extension.
|
||||
assert ".jpg" in path
|
||||
if split_img:
|
||||
pool.apply_async(worker, args=(path, opt, True, False), callback=update)
|
||||
pool.apply_async(worker, args=(path, opt, True, True), callback=update)
|
||||
|
@ -122,7 +124,6 @@ def worker(path, opt, split_mode=False, left_img=True):
|
|||
# Uncomment to filter any image that doesnt meet a threshold size.
|
||||
if min(h,w) < 1024:
|
||||
return
|
||||
|
||||
left = 0
|
||||
right = w
|
||||
if split_mode:
|
||||
|
@ -163,8 +164,6 @@ def worker(path, opt, split_mode=False, left_img=True):
|
|||
else:
|
||||
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
|
||||
crop_img = np.ascontiguousarray(crop_img)
|
||||
# If this fails, change it and the imwrite below to the write extension.
|
||||
assert ".png" in img_name
|
||||
if 'resize_final_img' in opt.keys():
|
||||
# Resize too.
|
||||
resize_factor = opt['resize_final_img']
|
||||
|
@ -173,7 +172,7 @@ def worker(path, opt, split_mode=False, left_img=True):
|
|||
crop_img = cv2.resize(crop_img, dsize, interpolation = cv2.INTER_AREA)
|
||||
cv2.imwrite(
|
||||
osp.join(opt['save_folder'],
|
||||
img_name.replace('.png', '_l{:05d}_s{:03d}.png'.format(left, index))), crop_img,
|
||||
img_name.replace('.jpg', '_l{:05d}_s{:03d}.png'.format(left, index))), crop_img,
|
||||
[cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']])
|
||||
return 'Processing {:s} ...'.format(img_name)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user