From f7d0901ce6e0dbaf1abc44732b3f7b611ebe4cd4 Mon Sep 17 00:00:00 2001
From: James Betker <jbetker@gmail.com>
Date: Sun, 31 Oct 2021 15:01:38 -0600
Subject: [PATCH] Decouple MEL from nv_tacotron_dataset

---
 codes/data/__init__.py                  |   4 +-
 codes/data/audio/nv_tacotron_dataset.py | 180 ++++++------------------
 2 files changed, 45 insertions(+), 139 deletions(-)

diff --git a/codes/data/__init__.py b/codes/data/__init__.py
index 4feca367..1ede1635 100644
--- a/codes/data/__init__.py
+++ b/codes/data/__init__.py
@@ -61,14 +61,14 @@ def create_dataset(dataset_opt, return_collate=False):
     elif mode == 'zipfile':
         from data.zip_file_dataset import ZipFileDataset as D
     elif mode == 'nv_tacotron':
-        from data.audio.nv_tacotron_dataset import TextMelLoader as D
+        from data.audio.nv_tacotron_dataset import TextWavLoader as D
         from data.audio.nv_tacotron_dataset import TextMelCollate as C
         from models.tacotron2.hparams import create_hparams
         default_params = create_hparams()
         default_params.update(dataset_opt)
         dataset_opt = munchify(default_params)
         if opt_get(dataset_opt, ['needs_collate'], True):
-            collate = C(dataset_opt.n_frames_per_step)
+            collate = C()
     elif mode == 'gpt_tts':
         from data.audio.gpt_tts_dataset import GptTtsDataset as D
         from data.audio.gpt_tts_dataset import GptTtsCollater as C
diff --git a/codes/data/audio/nv_tacotron_dataset.py b/codes/data/audio/nv_tacotron_dataset.py
index 66e28ae9..a9b22196 100644
--- a/codes/data/audio/nv_tacotron_dataset.py
+++ b/codes/data/audio/nv_tacotron_dataset.py
@@ -6,9 +6,11 @@ import numpy as np
 import torch
 import torch.utils.data
 import torch.nn.functional as F
+import torchaudio
 from tqdm import tqdm
 
 import models.tacotron2.layers as layers
+from data.audio.unsupervised_audio_dataset import load_audio
 from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
 
 from models.tacotron2.text import text_to_sequence
@@ -37,12 +39,7 @@ def load_voxpopuli(filename):
     return filepaths_and_text
 
 
-class TextMelLoader(torch.utils.data.Dataset):
-    """
-        1) loads audio,text pairs
-        2) normalizes text and converts them to sequences of one-hot vectors
-        3) computes mel-spectrograms from audio files.
-    """
+class TextWavLoader(torch.utils.data.Dataset):
     def __init__(self, hparams):
         self.path = hparams['path']
         if not isinstance(self.path, list):
@@ -65,117 +62,67 @@ class TextMelLoader(torch.utils.data.Dataset):
                 raise NotImplementedError()
             self.audiopaths_and_text.extend(fetcher_fn(p))
         self.text_cleaners = hparams.text_cleaners
-        self.sampling_rate = hparams.sampling_rate
-        self.load_mel_from_disk = opt_get(hparams, ['load_mel_from_disk'], False)
-        self.return_wavs = opt_get(hparams, ['return_wavs'], False)
-        self.input_sample_rate = opt_get(hparams, ['input_sample_rate'], self.sampling_rate)
-        assert not (self.load_mel_from_disk and self.return_wavs)
-        self.stft = layers.TacotronSTFT(
-            hparams.filter_length, hparams.hop_length, hparams.win_length,
-            hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
-            hparams.mel_fmax)
+        self.sample_rate = hparams.sample_rate
         random.seed(hparams.seed)
         random.shuffle(self.audiopaths_and_text)
-        self.max_mel_len = opt_get(hparams, ['max_mel_length'], None)
+        self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
         self.max_text_len = opt_get(hparams, ['max_text_length'], None)
         # If needs_collate=False, all outputs will be aligned and padded at maximum length.
         self.needs_collate = opt_get(hparams, ['needs_collate'], True)
         if not self.needs_collate:
-            assert self.max_mel_len is not None and self.max_text_len is not None
+            assert self.max_wav_len is not None and self.max_text_len is not None
 
-    def get_mel_text_pair(self, audiopath_and_text):
+    def get_wav_text_pair(self, audiopath_and_text):
         # separate filename and text
         audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
         text_seq = self.get_text(text)
-        mel = self.get_mel(audiopath)
-        return (text_seq, mel, text, audiopath_and_text[0])
-
-    def get_mel(self, filename):
-        if self.load_mel_from_disk and os.path.exists(f'{filename}_mel.npy'):
-            melspec = torch.from_numpy(np.load(f'{filename}_mel.npy'))
-            assert melspec.size(0) == self.stft.n_mel_channels, (
-                'Mel dimension mismatch: given {}, expected {}'.format(melspec.size(0), self.stft.n_mel_channels))
-        else:
-            if filename.endswith('.wav'):
-                audio, sampling_rate = load_wav_to_torch(filename)
-            elif filename.endswith('.mp3'):
-                # https://github.com/neonbjb/pyfastmp3decoder  - Definitely worth it.
-                from pyfastmp3decoder.mp3decoder import load_mp3
-                audio, sampling_rate = load_mp3(filename, self.input_sample_rate)
-                audio = torch.FloatTensor(audio)
-            else:
-                audio, sampling_rate = audio2numpy.audio_from_file(filename)
-                audio = torch.tensor(audio)
-
-            if sampling_rate != self.input_sample_rate:
-                if sampling_rate < self.input_sample_rate:
-                    print(f'{filename} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {self.input_sample_rate}. This is not a good idea.')
-                audio_norm = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=self.input_sample_rate/sampling_rate, mode='nearest', recompute_scale_factor=False).squeeze()
-            else:
-                audio_norm = audio
-            if audio_norm.std() > 1:
-                print(f"Something is very wrong with the given audio. std_dev={audio_norm.std()}. file={filename}")
-                return None
-            audio_norm.clip_(-1, 1)
-            audio_norm = audio_norm.unsqueeze(0)
-            audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
-            if self.input_sample_rate != self.sampling_rate:
-                ratio = self.sampling_rate / self.input_sample_rate
-                audio_norm = torch.nn.functional.interpolate(audio_norm.unsqueeze(0), scale_factor=ratio, mode='area').squeeze(0)
-            if self.return_wavs:
-                melspec = audio_norm
-            else:
-                melspec = self.stft.mel_spectrogram(audio_norm)
-                melspec = torch.squeeze(melspec, 0)
-
-        return melspec
+        wav = load_audio(audiopath, self.sample_rate)
+        return (text_seq, wav, text, audiopath_and_text[0])
 
     def get_text(self, text):
         text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
         return text_norm
 
     def __getitem__(self, index):
-        tseq, mel, text, path = self.get_mel_text_pair(self.audiopaths_and_text[index])
-        if mel is None or \
-            (self.max_mel_len is not None and mel.shape[-1] > self.max_mel_len) or \
+        tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
+        if wav is None or \
+            (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \
             (self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
-            #if mel is not None:
-            #    print(f"Exception {index} mel_len:{mel.shape[-1]} text_len:{tseq.shape[0]} fname: {path}")
+            # Basically, this audio file is nonexistent or too long to be supported by the dataset.
             # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result.
+            #if wav is not None:
+            #    print(f"Exception {index} wav_len:{wav.shape[-1]} text_len:{tseq.shape[0]} fname: {path}")
             rv = random.randint(0,len(self)-1)
             return self[rv]
-        orig_output = mel.shape[-1]
+        orig_output = wav.shape[-1]
         orig_text_len = tseq.shape[0]
         if not self.needs_collate:
-            if mel.shape[-1] != self.max_mel_len:
-                mel = F.pad(mel, (0, self.max_mel_len - mel.shape[-1]))
+            if wav.shape[-1] != self.max_wav_len:
+                wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
             if tseq.shape[0] != self.max_text_len:
                 tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
             return {
                 'real_text': text,
                 'padded_text': tseq,
                 'input_lengths': torch.tensor(orig_text_len, dtype=torch.long),
-                'padded_mel': mel,
+                'wav': wav,
                 'output_lengths': torch.tensor(orig_output, dtype=torch.long),
                 'filenames': path
             }
-        return tseq, mel, path, text
+        return tseq, wav, path, text
 
     def __len__(self):
         return len(self.audiopaths_and_text)
 
 
 class TextMelCollate():
-    """ Zero-pads model inputs and targets based on number of frames per setep
+    """ Zero-pads model inputs and targets based on number of frames per step
     """
-    def __init__(self, n_frames_per_step):
-        self.n_frames_per_step = n_frames_per_step
-
     def __call__(self, batch):
-        """Collate's training batch from normalized text and mel-spectrogram
+        """Collate's training batch from normalized text and wav
         PARAMS
         ------
-        batch: [text_normalized, mel_normalized, filename]
+        batch: [text_normalized, wav, filename, text]
         """
         # Right zero-pad all one-hot text sequences to max input length
         input_lengths, ids_sorted_decreasing = torch.sort(
@@ -193,81 +140,42 @@ class TextMelCollate():
             filenames.append(batch[ids_sorted_decreasing[i]][2])
             real_text.append(batch[ids_sorted_decreasing[i]][3])
 
-        # Right zero-pad mel-spec
-        num_mels = batch[0][1].size(0)
+        # Right zero-pad wav
+        num_wavs = batch[0][1].size(0)
         max_target_len = max([x[1].size(1) for x in batch])
-        if max_target_len % self.n_frames_per_step != 0:
-            max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
-            assert max_target_len % self.n_frames_per_step == 0
 
         # include mel padded and gate padded
-        mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
-        mel_padded.zero_()
-        gate_padded = torch.FloatTensor(len(batch), max_target_len)
-        gate_padded.zero_()
+        wav_padded = torch.FloatTensor(len(batch), num_wavs, max_target_len)
+        wav_padded.zero_()
         output_lengths = torch.LongTensor(len(batch))
         for i in range(len(ids_sorted_decreasing)):
-            mel = batch[ids_sorted_decreasing[i]][1]
-            mel_padded[i, :, :mel.size(1)] = mel
-            gate_padded[i, mel.size(1)-1:] = 1
-            output_lengths[i] = mel.size(1)
+            wav = batch[ids_sorted_decreasing[i]][1]
+            wav_padded[i, :, :wav.size(1)] = wav
+            output_lengths[i] = wav.size(1)
 
         return {
             'padded_text': text_padded,
             'input_lengths': input_lengths,
-            'padded_mel': mel_padded,
-            'padded_gate': gate_padded,
+            'wav': wav_padded,
             'output_lengths': output_lengths,
             'filenames': filenames,
             'real_text': real_text,
         }
 
 
-def save_mel_buffer_to_file(mel, path):
-    np.save(path, mel.cpu().numpy())
-
-
-def dump_mels_to_disk():
-    params = {
-        'mode': 'nv_tacotron',
-        'path': ['Z:\\mozcv\\en\\train.tsv'],
-        'fetcher_mode': ['mozilla_cv'],
-        'phase': 'train',
-        'n_workers': 8,
-        'batch_size': 1,
-        'needs_collate': True,
-        'max_mel_length': 10000,
-        'max_text_length': 1000,
-        #'return_wavs': True,
-        #'input_sample_rate': 22050,
-        #'sampling_rate': 8000
-    }
-    from data import create_dataset, create_dataloader
-    ds, c = create_dataset(params, return_collate=True)
-    dl = create_dataloader(ds, params, collate_fn=c)
-    for b in tqdm(dl):
-        mels = b['padded_mel']
-        fnames = b['filenames']
-        for j, fname in enumerate(fnames):
-            save_mel_buffer_to_file(mels[j], f'{fname}_mel.npy')
-
-
 if __name__ == '__main__':
-    dump_mels_to_disk()
-    '''
+    batch_sz = 32
     params = {
         'mode': 'nv_tacotron',
-        'path': 'E:\\audio\\MozillaCommonVoice\\en\\train.tsv',
+        'path': 'E:\\audio\\MozillaCommonVoice\\en\\test.tsv',
         'phase': 'train',
-        'n_workers': 12,
-        'batch_size': 32,
+        'n_workers': 0,
+        'batch_size': batch_sz,
         'fetcher_mode': 'mozilla_cv',
-        'needs_collate': False,
-        'max_mel_length': 800,
-        'max_text_length': 200,
-        #'return_wavs': True,
-        #'input_sample_rate': 22050,
-        #'sampling_rate': 8000
+        'needs_collate': True,
+        #'max_wav_length': 256000,
+        #'max_text_length': 200,
+        'sample_rate': 22050,
     }
     from data import create_dataset, create_dataloader
 
@@ -277,9 +185,7 @@ if __name__ == '__main__':
     m = None
     for k in range(1000):
         for i, b in tqdm(enumerate(dl)):
-            continue
-            pm = b['padded_mel']
-            pm = torch.nn.functional.pad(pm, (0, 800-pm.shape[-1]))
-            m = pm if m is None else torch.cat([m, pm], dim=0)
-            print(m.mean(), m.std())
-    '''
\ No newline at end of file
+            w = b['wav']
+            for ib in range(batch_sz):
+                print(f'{i} {ib} {b["real_text"][ib]}')
+                torchaudio.save(f'{i}_clip_{ib}.wav', b['wav'][ib], ds.sample_rate)