Basically just cleaning up the code, removing some bad conventions,
and reducing complexity somewhat so that I can play around with
this arch a bit more easily.
SPSR_model really isn't that different from SRGAN_model. Rather than continuing to re-implement
everything I've done in SRGAN_model, port the new stuff from SPSR over.
This really demonstrates the need to refactor SRGAN_model a bit to make it cleaner. It is quite the
beast these days..
This is done by pre-training a feature net that predicts the features
of HR images from LR images. Then use the original feature network
and this new one in tandem to work only on LR/Gen images.
The logic is that the discriminator may be incapable of providing a truly
targeted loss for all image regions since it has to be too generic
(basically the same argument for the switched generator). So add some
switches in! See how it works!
The latest discriminator architecture was already pretty much a unet. This
one makes that official and uses shared layers. It also upsamples one additional
time and throws out the lowest upsampling result.
The intent is to delete the old vgg pixdisc, but I'll keep it around for a bit since
I'm still trying out a few models with it.
- Swap multiple blocks in the image instead of just one. The discriminator was clearly
learning that most blocks have one region that needs to be fixed.
- Relax block size constraints. This was in place to gaurantee that the discriminator
signal was clean. Instead, just downsample the "loss image" with bilinear interpolation.
The result is noisier, but this is actually probably healthy for the discriminator.
- Removed a bunch of unnecessary image loggers. These were just consuming space and never being viewed
- Got rid of support of artificial var_ref support. The new pixdisc is what i wanted to implement then - it's much better.
- Add pixgan GAN mechanism. This is purpose-built for the pixdisc. It is intended to promote a healthy discriminator
- Megabatchfactor was applied twice on metrics, fixed that
Adds pix_gan (untested) which swaps a portion of the fake and real image with each other, then expects the discriminator
to properly discriminate the swapped regions.
Let the Generator get to a point where it is at least competing with the discriminator before firing off.
Backwards from most GAN architectures, but this one is a bit different from most.