import torch def music2mel(clip): if len(clip.shape) == 1: clip = clip.unsqueeze(0) from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector inj = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'normalize': True, 'true_normalization': True, 'in': 'in', 'out': 'out'}, {}) return inj({'in': clip})['out'] def music2cqt(clip): def normalize_cqt(cqt): # CQT_MIN = 0 CQT_MAX = 18 return 2 * cqt / CQT_MAX - 1 if len(clip.shape) == 1: clip = clip.unsqueeze(0) from nnAudio.features.cqt import CQT # Visually, filter_scale=.25 seems to be the most descriptive representation, but loses frequency fidelity. # It may be desirable to mix filter_scale=.25 with filter_scale=1. cqt = CQT(sr=22050, hop_length=256, n_bins=256, bins_per_octave=32, filter_scale=.25, norm=1, verbose=False) return normalize_cqt(cqt(clip)) def get_mel2wav_model(): from models.audio.music.unet_diffusion_waveform_gen_simple import \ DiffusionWaveformGen model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1, 2, 3, 4, 4], num_res_blocks=[3, 3, 2, 2, 1], token_conditioning_resolutions=[1, 4, 16], dropout=0, kernel_size=3, scale_factor=2, time_embed_dim_multiplier=4, unconditioned_percentage=0) model.load_state_dict(torch.load( "../experiments/music_mel2wav.pth", map_location=torch.device('cpu'))) model.eval() return model def get_mel2wav_v3_model(): from models.audio.music.unet_diffusion_waveform_gen3 import \ DiffusionWaveformGen model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1, 1.5, 2, 4], num_res_blocks=[2, 1, 1, 0], mid_resnet_depth=24, token_conditioning_resolutions=[1, 4], dropout=0, time_embed_dim_multiplier=1, unconditioned_percentage=0) model.load_state_dict(torch.load( "../experiments/music_mel2wav_v3.pth", map_location=torch.device('cpu'))) model.eval() return model def get_music_codegen(): from models.audio.mel2vec import ContrastiveTrainingWrapper model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0, mask_time_prob=0, mask_time_length=6, num_negatives=100, codebook_size=16, codebook_groups=4, disable_custom_linear_init=True, do_reconstruction_loss=True) model.load_state_dict(torch.load( f"../experiments/m2v_music.pth", map_location=torch.device('cpu'))) model = model.eval() return model def get_cheater_encoder(): from models.audio.music.gpt_music2 import UpperEncoder encoder = UpperEncoder(256, 1024, 256) encoder.load_state_dict( torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu'))) encoder = encoder.eval() return encoder def get_cheater_decoder(): from models.audio.music.transformer_diffusion12 import \ TransformerDiffusionWithCheaterLatent model = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512, model_channels=1024, contraction_dim=512, prenet_channels=1024, input_vec_dim=256, prenet_layers=6, num_heads=8, num_layers=16, new_code_expansion=True, dropout=0, unconditioned_percentage=0) model.load_state_dict(torch.load( f'../experiments/music_cheater_decoder.pth', map_location=torch.device('cpu'))) model = model.eval() return model def get_ar_prior(): from models.audio.music.cheater_gen_ar import ConditioningAR cheater_ar = ConditioningAR( 1024, layers=24, dropout=0, cond_free_percent=0) cheater_ar.load_state_dict(torch.load( '../experiments/music_cheater_ar.pth', map_location=torch.device('cpu'))) cheater_ar = cheater_ar.eval() return cheater_ar