import functools import math import multiprocessing from contextlib import contextmanager, ExitStack from functools import partial from math import log2 from random import random import torch import torch.nn.functional as F import trainer.losses as L import numpy as np from kornia.filters import filter2D from linear_attention_transformer import ImageLinearAttention from torch import nn from torch.autograd import grad as torch_grad from vector_quantize_pytorch import VectorQuantize from trainer.networks import register_model from utils.util import checkpoint, opt_get try: from apex import amp APEX_AVAILABLE = True except: APEX_AVAILABLE = False assert torch.cuda.is_available(), 'You need to have an Nvidia GPU with CUDA installed.' num_cores = multiprocessing.cpu_count() # constants EPS = 1e-8 CALC_FID_NUM_IMAGES = 12800 # helper classes def DiffAugment(x, types=[]): for p in types: for f in AUGMENT_FNS[p]: x = f(x) return x.contiguous() def rand_brightness(x): x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) return x def rand_saturation(x): x_mean = x.mean(dim=1, keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean return x def rand_contrast(x): x_mean = x.mean(dim=[1, 2, 3], keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean return x def rand_translation(x, ratio=0.125): shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(x.size(2), dtype=torch.long, device=x.device), torch.arange(x.size(3), dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) return x def rand_cutout(x, ratio=0.5): cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(cutout_size[0], dtype=torch.long, device=x.device), torch.arange(cutout_size[1], dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) mask[grid_batch, grid_x, grid_y] = 0 x = x * mask.unsqueeze(1) return x AUGMENT_FNS = { 'color': [rand_brightness, rand_saturation, rand_contrast], 'translation': [rand_translation], 'cutout': [rand_cutout], } class NanException(Exception): pass class EMA(): def __init__(self, beta): super().__init__() self.beta = beta def update_average(self, old, new): if not exists(old): return new return old * self.beta + (1 - self.beta) * new class Flatten(nn.Module): def forward(self, x): return x.reshape(x.shape[0], -1) class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): return self.fn(x) + x class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x): return self.fn(x) * self.g class PermuteToFrom(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): x = x.permute(0, 2, 3, 1) out, loss = self.fn(x) out = out.permute(0, 3, 1, 2) return out, loss class Blur(nn.Module): def __init__(self): super().__init__() f = torch.Tensor([1, 2, 1]) self.register_buffer('f', f) def forward(self, x): f = self.f f = f[None, None, :] * f[None, :, None] return filter2D(x, f, normalized=True) # one layer of self-attention and feedforward, for images attn_and_ff = lambda chan: nn.Sequential(*[ Residual(Rezero(ImageLinearAttention(chan, norm_queries=True))), Residual(Rezero(nn.Sequential(nn.Conv2d(chan, chan * 2, 1), leaky_relu(), nn.Conv2d(chan * 2, chan, 1)))) ]) # helpers def exists(val): return val is not None @contextmanager def null_context(): yield def combine_contexts(contexts): @contextmanager def multi_contexts(): with ExitStack() as stack: yield [stack.enter_context(ctx()) for ctx in contexts] return multi_contexts def default(value, d): return value if exists(value) else d def cycle(iterable): while True: for i in iterable: yield i def cast_list(el): return el if isinstance(el, list) else [el] def is_empty(t): if isinstance(t, torch.Tensor): return t.nelement() == 0 return not exists(t) def raise_if_nan(t): if torch.isnan(t): raise NanException def gradient_accumulate_contexts(gradient_accumulate_every, is_ddp, ddps): if is_ddp: num_no_syncs = gradient_accumulate_every - 1 head = [combine_contexts(map(lambda ddp: ddp.no_sync, ddps))] * num_no_syncs tail = [null_context] contexts = head + tail else: contexts = [null_context] * gradient_accumulate_every for context in contexts: with context(): yield def loss_backwards(fp16, loss, optimizer, loss_id, **kwargs): if fp16: with amp.scale_loss(loss, optimizer, loss_id) as scaled_loss: scaled_loss.backward(**kwargs) else: loss.backward(**kwargs) def gradient_penalty(images, output, weight=10, return_structured_grads=False): batch_size = images.shape[0] gradients = torch_grad(outputs=output, inputs=images, grad_outputs=torch.ones(output.size(), device=images.device), create_graph=True, retain_graph=True, only_inputs=True)[0] flat_grad = gradients.reshape(batch_size, -1) penalty = weight * ((flat_grad.norm(2, dim=1) - 1) ** 2).mean() if return_structured_grads: return penalty, gradients else: return penalty def calc_pl_lengths(styles, images): device = images.device num_pixels = images.shape[2] * images.shape[3] pl_noise = torch.randn(images.shape, device=device) / math.sqrt(num_pixels) outputs = (images * pl_noise).sum() pl_grads = torch_grad(outputs=outputs, inputs=styles, grad_outputs=torch.ones(outputs.shape, device=device), create_graph=True, retain_graph=True, only_inputs=True)[0] return (pl_grads ** 2).sum(dim=2).mean(dim=1).sqrt() def image_noise(n, im_size, device): return torch.FloatTensor(n, im_size, im_size, 1).uniform_(0., 1.).cuda(device) def leaky_relu(p=0.2): return nn.LeakyReLU(p, inplace=True) def evaluate_in_chunks(max_batch_size, model, *args): split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args)))) chunked_outputs = [model(*i) for i in split_args] if len(chunked_outputs) == 1: return chunked_outputs[0] return torch.cat(chunked_outputs, dim=0) def set_requires_grad(model, bool): for p in model.parameters(): p.requires_grad = bool def slerp(val, low, high): low_norm = low / torch.norm(low, dim=1, keepdim=True) high_norm = high / torch.norm(high, dim=1, keepdim=True) omega = torch.acos((low_norm * high_norm).sum(1)) so = torch.sin(omega) res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high return res # augmentations def random_hflip(tensor, prob): if prob > random(): return tensor return torch.flip(tensor, dims=(3,)) class StyleGan2Augmentor(nn.Module): def __init__(self, D, image_size, types, prob): super().__init__() self.D = D self.prob = prob self.types = types def forward(self, images, detach=False): if random() < self.prob: images = random_hflip(images, prob=0.5) images = DiffAugment(images, types=self.types) if detach: images = images.detach() # Save away for use elsewhere (e.g. unet loss) self.aug_images = images return self.D(images) def network_loaded(self): self.D.network_loaded() # stylegan2 classes class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, lr_mul=1, bias=True): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim)) self.lr_mul = lr_mul def forward(self, input): return F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) class StyleVectorizer(nn.Module): def __init__(self, emb, depth, lr_mul=0.1): super().__init__() layers = [] for i in range(depth): layers.extend([EqualLinear(emb, emb, lr_mul), leaky_relu()]) self.net = nn.Sequential(*layers) def forward(self, x): x = F.normalize(x, dim=1) return self.net(x) class RGBBlock(nn.Module): def __init__(self, latent_dim, input_channel, upsample, rgba=False): super().__init__() self.input_channel = input_channel self.to_style = nn.Linear(latent_dim, input_channel) out_filters = 3 if not rgba else 4 self.conv = Conv2DMod(input_channel, out_filters, 1, demod=False) self.upsample = nn.Sequential( nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), Blur() ) if upsample else None def forward(self, x, prev_rgb, istyle): b, c, h, w = x.shape style = self.to_style(istyle) x = self.conv(x, style) if exists(prev_rgb): x = x + prev_rgb if exists(self.upsample): x = self.upsample(x) return x class AdaptiveInstanceNorm(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() from models.archs.arch_util import ConvGnLelu self.style2scale = ConvGnLelu(style_dim, in_channel, kernel_size=1, norm=False, activation=False, bias=True) self.style2bias = ConvGnLelu(style_dim, in_channel, kernel_size=1, norm=False, activation=False, bias=True, weight_init_factor=0) self.norm = nn.InstanceNorm2d(in_channel) def forward(self, input, style): gamma = self.style2scale(style) beta = self.style2bias(style) out = self.norm(input) out = gamma * out + beta return out class NoiseInjection(nn.Module): def __init__(self, channel): super().__init__() self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1)) def forward(self, image, noise): return image + self.weight * noise class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * math.sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualConv2d(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = equal_lr(conv) def forward(self, input): return self.conv(input) class Conv2DMod(nn.Module): def __init__(self, in_chan, out_chan, kernel, demod=True, stride=1, dilation=1, **kwargs): super().__init__() self.filters = out_chan self.demod = demod self.kernel = kernel self.stride = stride self.dilation = dilation self.weight = nn.Parameter(torch.randn((out_chan, in_chan, kernel, kernel))) nn.init.kaiming_normal_(self.weight, a=0, mode='fan_in', nonlinearity='leaky_relu') def _get_same_padding(self, size, kernel, dilation, stride): return ((size - 1) * (stride - 1) + dilation * (kernel - 1)) // 2 def forward(self, x, y): b, c, h, w = x.shape w1 = y[:, None, :, None, None] w2 = self.weight[None, :, :, :, :] weights = w2 * (w1 + 1) if self.demod: d = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4), keepdim=True) + EPS) weights = weights * d x = x.reshape(1, -1, h, w) _, _, *ws = weights.shape weights = weights.reshape(b * self.filters, *ws) padding = self._get_same_padding(h, self.kernel, self.dilation, self.stride) x = F.conv2d(x, weights, padding=padding, groups=b) x = x.reshape(-1, self.filters, h, w) return x class GeneratorBlockWithStructure(nn.Module): def __init__(self, latent_dim, input_channels, filters, upsample=True, upsample_rgb=True, rgba=False): super().__init__() self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) if upsample else None # Uses stylegan1 style blocks for injecting structural latent. self.conv0 = EqualConv2d(input_channels, filters, 3, padding=1) self.to_noise0 = nn.Linear(1, filters) self.noise0 = equal_lr(NoiseInjection(filters)) self.adain0 = AdaptiveInstanceNorm(filters, latent_dim) self.to_style1 = nn.Linear(latent_dim, filters) self.to_noise1 = nn.Linear(1, filters) self.conv1 = Conv2DMod(filters, filters, 3) self.to_style2 = nn.Linear(latent_dim, filters) self.to_noise2 = nn.Linear(1, filters) self.conv2 = Conv2DMod(filters, filters, 3) self.activation = leaky_relu() self.to_rgb = RGBBlock(latent_dim, filters, upsample_rgb, rgba) def forward(self, x, prev_rgb, istyle, inoise, structure_input): if exists(self.upsample): x = self.upsample(x) inoise = inoise[:, :x.shape[2], :x.shape[3], :] noise0 = self.to_noise0(inoise).permute((0, 3, 1, 2)) noise1 = self.to_noise1(inoise).permute((0, 3, 1, 2)) noise2 = self.to_noise2(inoise).permute((0, 3, 1, 2)) structure = torch.nn.functional.interpolate(structure_input, size=x.shape[2:], mode="nearest") x = self.conv0(x) x = self.noise0(x, noise0) x = self.adain0(x, structure) style1 = self.to_style1(istyle) x = self.conv1(x, style1) x = self.activation(x + noise1) style2 = self.to_style2(istyle) x = self.conv2(x, style2) x = self.activation(x + noise2) rgb = self.to_rgb(x, prev_rgb, istyle) return x, rgb class GeneratorBlock(nn.Module): def __init__(self, latent_dim, input_channels, filters, upsample=True, upsample_rgb=True, rgba=False, structure_input=False): super().__init__() self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) if upsample else None self.structure_input = structure_input if self.structure_input: self.structure_conv = nn.Conv2d(3, input_channels, 3, padding=1) input_channels = input_channels * 2 self.to_style1 = nn.Linear(latent_dim, input_channels) self.to_noise1 = nn.Linear(1, filters) self.conv1 = Conv2DMod(input_channels, filters, 3) self.to_style2 = nn.Linear(latent_dim, filters) self.to_noise2 = nn.Linear(1, filters) self.conv2 = Conv2DMod(filters, filters, 3) self.activation = leaky_relu() self.to_rgb = RGBBlock(latent_dim, filters, upsample_rgb, rgba) def forward(self, x, prev_rgb, istyle, inoise, structure_input=None): if exists(self.upsample): x = self.upsample(x) if self.structure_input: s = self.structure_conv(structure_input) x = torch.cat([x, s], dim=1) inoise = inoise[:, :x.shape[2], :x.shape[3], :] noise1 = self.to_noise1(inoise).permute((0, 3, 2, 1)) noise2 = self.to_noise2(inoise).permute((0, 3, 2, 1)) style1 = self.to_style1(istyle) x = self.conv1(x, style1) x = self.activation(x + noise1) style2 = self.to_style2(istyle) x = self.conv2(x, style2) x = self.activation(x + noise2) rgb = self.to_rgb(x, prev_rgb, istyle) return x, rgb class Generator(nn.Module): def __init__(self, image_size, latent_dim, network_capacity=16, transparent=False, attn_layers=[], no_const=False, fmap_max=512, structure_input=False): super().__init__() self.image_size = image_size self.latent_dim = latent_dim self.num_layers = int(log2(image_size) - 1) filters = [network_capacity * (2 ** (i + 1)) for i in range(self.num_layers)][::-1] set_fmap_max = partial(min, fmap_max) filters = list(map(set_fmap_max, filters)) init_channels = filters[0] filters = [init_channels, *filters] in_out_pairs = zip(filters[:-1], filters[1:]) self.no_const = no_const if no_const: self.to_initial_block = nn.ConvTranspose2d(latent_dim, init_channels, 4, 1, 0, bias=False) else: self.initial_block = nn.Parameter(torch.randn((1, init_channels, 4, 4))) self.initial_conv = nn.Conv2d(filters[0], filters[0], 3, padding=1) self.blocks = nn.ModuleList([]) self.attns = nn.ModuleList([]) for ind, (in_chan, out_chan) in enumerate(in_out_pairs): not_first = ind != 0 not_last = ind != (self.num_layers - 1) num_layer = self.num_layers - ind attn_fn = attn_and_ff(in_chan) if num_layer in attn_layers else None self.attns.append(attn_fn) if structure_input: block_fn = GeneratorBlockWithStructure else: block_fn = GeneratorBlock block = block_fn( latent_dim, in_chan, out_chan, upsample=not_first, upsample_rgb=not_last, rgba=transparent ) self.blocks.append(block) def forward(self, styles, input_noise, structure_input=None, starting_shape=None): batch_size = styles.shape[0] image_size = self.image_size if self.no_const: avg_style = styles.mean(dim=1)[:, :, None, None] x = self.to_initial_block(avg_style) else: x = self.initial_block.expand(batch_size, -1, -1, -1) if starting_shape is not None: x = F.interpolate(x, size=starting_shape, mode="bilinear") rgb = None styles = styles.transpose(0, 1) x = self.initial_conv(x) if structure_input is not None: s = torch.nn.functional.interpolate(structure_input, size=x.shape[2:], mode="nearest") for style, block, attn in zip(styles, self.blocks, self.attns): if exists(attn): x = checkpoint(attn, x) if structure_input is not None: if exists(block.upsample): # In this case, the structural guidance is given by the extra information over the previous layer. twoX = (x.shape[2]*2, x.shape[3]*2) sn = torch.nn.functional.interpolate(structure_input, size=twoX, mode="nearest") s_int = torch.nn.functional.interpolate(s, size=twoX, mode="bilinear") s_diff = sn - s_int else: # This is the initial case - just feed in the base structure. s_diff = s else: s_diff = None x, rgb = checkpoint(block, x, rgb, style, input_noise, s_diff) return rgb # Wrapper that combines style vectorizer with the actual generator. class StyleGan2GeneratorWithLatent(nn.Module): def __init__(self, image_size, latent_dim=512, style_depth=8, lr_mlp=.1, network_capacity=16, transparent=False, attn_layers=[], no_const=False, fmap_max=512, structure_input=False): super().__init__() self.vectorizer = StyleVectorizer(latent_dim, style_depth, lr_mul=lr_mlp) self.gen = Generator(image_size, latent_dim, network_capacity, transparent, attn_layers, no_const, fmap_max, structure_input=structure_input) self.mixed_prob = .9 self._init_weights() def noise(self, n, latent_dim, device): return torch.randn(n, latent_dim).cuda(device) def noise_list(self, n, layers, latent_dim, device): return [(self.noise(n, latent_dim, device), layers)] def mixed_list(self, n, layers, latent_dim, device): tt = int(torch.rand(()).numpy() * layers) return self.noise_list(n, tt, latent_dim, device) + self.noise_list(n, layers - tt, latent_dim, device) def latent_to_w(self, style_vectorizer, latent_descr): return [(style_vectorizer(z), num_layers) for z, num_layers in latent_descr] def styles_def_to_tensor(self, styles_def): return torch.cat([t[:, None, :].expand(-1, n, -1) for t, n in styles_def], dim=1) # To use per the stylegan paper, input should be uniform noise. This gen takes it in as a normal "image" format: # b,f,h,w. def forward(self, x, structure_input=None, fit_starting_shape_to_structure=False): b, f, h, w = x.shape full_random_latents = True if full_random_latents: style = self.noise(b*2, self.gen.latent_dim, x.device) w = self.vectorizer(style) # Randomly distribute styles across layers w_styles = w[:,None,:].expand(-1, self.gen.num_layers, -1).clone() for j in range(b): cutoff = int(torch.rand(()).numpy() * self.gen.num_layers) if cutoff == self.gen.num_layers or random() > self.mixed_prob: w_styles[j] = w_styles[j*2] else: w_styles[j, :cutoff] = w_styles[j*2, :cutoff] w_styles[j, cutoff:] = w_styles[j*2+1, cutoff:] w_styles = w_styles[:b] else: get_latents_fn = self.mixed_list if random() < self.mixed_prob else self.noise_list style = get_latents_fn(b, self.gen.num_layers, self.gen.latent_dim, device=x.device) w_space = self.latent_to_w(self.vectorizer, style) w_styles = self.styles_def_to_tensor(w_space) starting_shape = None if fit_starting_shape_to_structure: starting_shape = (x.shape[2] // 32, x.shape[3] // 32) # The underlying model expects the noise as b,h,w,1. Make it so. return self.gen(w_styles, x[:,0,:,:].unsqueeze(dim=3), structure_input, starting_shape), w_styles def _init_weights(self): for m in self.modules(): if type(m) in {nn.Conv2d, nn.Linear} and hasattr(m, 'weight'): nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu') for block in self.gen.blocks: nn.init.zeros_(block.to_noise1.weight) nn.init.zeros_(block.to_noise2.weight) nn.init.zeros_(block.to_noise1.bias) nn.init.zeros_(block.to_noise2.bias) class DiscriminatorBlock(nn.Module): def __init__(self, input_channels, filters, downsample=True): super().__init__() self.filters = filters self.conv_res = nn.Conv2d(input_channels, filters, 1, stride=(2 if downsample else 1)) self.net = nn.Sequential( nn.Conv2d(input_channels, filters, 3, padding=1), leaky_relu(), nn.Conv2d(filters, filters, 3, padding=1), leaky_relu() ) self.downsample = nn.Sequential( Blur(), nn.Conv2d(filters, filters, 3, padding=1, stride=2) ) if downsample else None def forward(self, x): res = self.conv_res(x) x = self.net(x) if exists(self.downsample): x = self.downsample(x) x = (x + res) * (1 / math.sqrt(2)) return x class StyleGan2Discriminator(nn.Module): def __init__(self, image_size, network_capacity=16, fq_layers=[], fq_dict_size=256, attn_layers=[], transparent=False, fmap_max=512, input_filters=3, quantize=False, do_checkpointing=False, mlp=False): super().__init__() num_layers = int(log2(image_size) - 1) blocks = [] filters = [input_filters] + [(64) * (2 ** i) for i in range(num_layers + 1)] set_fmap_max = partial(min, fmap_max) filters = list(map(set_fmap_max, filters)) chan_in_out = list(zip(filters[:-1], filters[1:])) blocks = [] attn_blocks = [] quantize_blocks = [] for ind, (in_chan, out_chan) in enumerate(chan_in_out): num_layer = ind + 1 is_not_last = ind != (len(chan_in_out) - 1) block = DiscriminatorBlock(in_chan, out_chan, downsample=is_not_last) blocks.append(block) attn_fn = attn_and_ff(out_chan) if num_layer in attn_layers else None attn_blocks.append(attn_fn) if quantize: quantize_fn = PermuteToFrom(VectorQuantize(out_chan, fq_dict_size)) if num_layer in fq_layers else None quantize_blocks.append(quantize_fn) else: quantize_blocks.append(None) self.blocks = nn.ModuleList(blocks) self.attn_blocks = nn.ModuleList(attn_blocks) self.quantize_blocks = nn.ModuleList(quantize_blocks) self.do_checkpointing = do_checkpointing chan_last = filters[-1] latent_dim = 2 * 2 * chan_last self.final_conv = nn.Conv2d(chan_last, chan_last, 3, padding=1) self.flatten = Flatten() if mlp: self.to_logit = nn.Sequential(nn.Linear(latent_dim, 100), nn.Linear(100, 1)) else: self.to_logit = nn.Linear(latent_dim, 1) self._init_weights() def forward(self, x): b, *_ = x.shape quantize_loss = torch.zeros(1).to(x) for (block, attn_block, q_block) in zip(self.blocks, self.attn_blocks, self.quantize_blocks): if self.do_checkpointing: x = checkpoint(block, x) else: x = block(x) if exists(attn_block): x = attn_block(x) if exists(q_block): x, _, loss = q_block(x) quantize_loss += loss x = self.final_conv(x) x = self.flatten(x) x = self.to_logit(x) if exists(q_block): return x.squeeze(), quantize_loss else: return x.squeeze() def _init_weights(self): for m in self.modules(): if type(m) in {nn.Conv2d, nn.Linear}: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu') # Configures the network as partially pre-trained. This means: # 1) The top (high-resolution) `num_blocks` will have their weights re-initialized. # 2) The haed (linear layers) will also have their weights re-initialized # 3) All intermediate blocks will be frozen until step `frozen_until_step` # These settings will be applied after the weights have been loaded (network_loaded()) def configure_partial_training(self, bypass_blocks=0, num_blocks=2, frozen_until_step=0): self.bypass_blocks = bypass_blocks self.num_blocks = num_blocks self.frozen_until_step = frozen_until_step # Called after the network weights are loaded. def network_loaded(self): if not hasattr(self, 'frozen_until_step'): return if self.bypass_blocks > 0: self.blocks = self.blocks[self.bypass_blocks:] self.blocks[0] = DiscriminatorBlock(3, self.blocks[0].filters, downsample=True).to(next(self.parameters()).device) reset_blocks = [self.to_logit] for i in range(self.num_blocks): reset_blocks.append(self.blocks[i]) for bl in reset_blocks: for m in bl.modules(): if type(m) in {nn.Conv2d, nn.Linear}: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu') for p in m.parameters(recurse=True): p._NEW_BLOCK = True for p in self.parameters(): if not hasattr(p, '_NEW_BLOCK'): p.DO_NOT_TRAIN_UNTIL = self.frozen_until_step class StyleGan2DivergenceLoss(L.ConfigurableLoss): def __init__(self, opt, env): super().__init__(opt, env) self.real = opt['real'] self.fake = opt['fake'] self.discriminator = opt['discriminator'] self.for_gen = opt['gen_loss'] self.gp_frequency = opt['gradient_penalty_frequency'] self.noise = opt['noise'] if 'noise' in opt.keys() else 0 def forward(self, net, state): real_input = state[self.real] fake_input = state[self.fake] if self.noise != 0: fake_input = fake_input + torch.rand_like(fake_input) * self.noise real_input = real_input + torch.rand_like(real_input) * self.noise D = self.env['discriminators'][self.discriminator] fake = D(fake_input) if self.for_gen: return fake.mean() else: real_input.requires_grad_() # <-- Needed to compute gradients on the input. real = D(real_input) divergence_loss = (F.relu(1 + real) + F.relu(1 - fake)).mean() # Apply gradient penalty. TODO: migrate this elsewhere. if self.env['step'] % self.gp_frequency == 0: gp = gradient_penalty(real_input, real) self.metrics.append(("gradient_penalty", gp.clone().detach())) divergence_loss = divergence_loss + gp real_input.requires_grad_(requires_grad=False) return divergence_loss class StyleGan2PathLengthLoss(L.ConfigurableLoss): def __init__(self, opt, env): super().__init__(opt, env) self.w_styles = opt['w_styles'] self.gen = opt['gen'] self.pl_mean = None self.pl_length_ma = EMA(.99) def forward(self, net, state): w_styles = state[self.w_styles] gen = state[self.gen] pl_lengths = calc_pl_lengths(w_styles, gen) avg_pl_length = np.mean(pl_lengths.detach().cpu().numpy()) if not is_empty(self.pl_mean): pl_loss = ((pl_lengths - self.pl_mean) ** 2).mean() if not torch.isnan(pl_loss): return pl_loss else: print("Path length loss returned NaN!") self.pl_mean = self.pl_length_ma.update_average(self.pl_mean, avg_pl_length) return 0 @register_model def register_stylegan2_lucidrains(opt_net, opt): is_structured = opt_net['structured'] if 'structured' in opt_net.keys() else False attn = opt_net['attn_layers'] if 'attn_layers' in opt_net.keys() else [] return StyleGan2GeneratorWithLatent(image_size=opt_net['image_size'], latent_dim=opt_net['latent_dim'], style_depth=opt_net['style_depth'], structure_input=is_structured, attn_layers=attn) @register_model def register_stylegan2_discriminator(opt_net, opt): attn = opt_net['attn_layers'] if 'attn_layers' in opt_net.keys() else [] disc = StyleGan2Discriminator(image_size=opt_net['image_size'], input_filters=opt_net['in_nc'], attn_layers=attn, do_checkpointing=opt_get(opt_net, ['do_checkpointing'], False), quantize=opt_get(opt_net, ['quantize'], False), mlp=opt_get(opt_net, ['mlp_head'], True)) if 'use_partial_pretrained' in opt_net.keys(): disc.configure_partial_training(opt_net['bypass_blocks'], opt_net['partial_training_blocks'], opt_net['intermediate_blocks_frozen_until']) return StyleGan2Augmentor(disc, opt_net['image_size'], types=opt_net['augmentation_types'], prob=opt_net['augmentation_probability'])