import argparse import logging import math import os import random from glob import glob import torch import torch.nn.functional as F import torchvision from PIL import Image from tqdm import tqdm import utils.options as option import utils from data import create_dataset, create_dataloader from data.image_corruptor import ImageCorruptor from models.ExtensibleTrainer import ExtensibleTrainer from utils import util def image_2_tensor(impath, desired_size): img = Image.open(impath) if desired_size is not None: factor = max(desired_size[0] / img.width, desired_size[1] / img.height) new_size = (int(math.ceil(img.width * factor)), int(math.ceil(img.height * factor))) img = img.resize(new_size, Image.BICUBIC) h_gap = img.height - desired_size[1] w_gap = img.width - desired_size[0] assert h_gap >= 0 and w_gap >= 0 ht = h_gap // 2 hb = desired_size[1] + ht wl = w_gap // 2 wr = desired_size[1] + wl timg = torchvision.transforms.ToTensor()(img).unsqueeze(0) if desired_size is not None: timg = timg[:, :3, ht:hb, wl:wr] assert timg.shape[2] == desired_size[1] and timg.shape[3] == desired_size[0] else: # Enforce that the input must have a input dimension that is a factor of 16. b, c, h, w = timg.shape h = (h // 16) * 16 w = (w // 16) * 16 timg = timg[:, :3, :h, :w] return timg def interpolate_lr(hr, scale): return F.interpolate(hr, scale_factor=1 / scale, mode="area") def fetch_latents_for_image(gen, img, scale, lr_infer=interpolate_lr): z, _, _ = gen(gt=img, lr=lr_infer(img, scale), epses=[], reverse=False, add_gt_noise=False) return z def fetch_latents_for_images(gen, imgs, scale, lr_infer=interpolate_lr): latents = [] for img in tqdm(imgs): z, _, _ = gen(gt=img, lr=lr_infer(img, scale), epses=[], reverse=False, add_gt_noise=False) latents.append(z) return latents def fetch_spatial_metrics_for_latents(latents): dt_scales = [] dt_biases = [] for i in range(len(latents)): latent = torch.stack(latents[i], dim=-1).squeeze(0) s = latent.std(dim=[1, 2, 3]).view(1,-1,1,1) b = latent.mean(dim=[1, 2, 3]).view(1,-1,1,1) dt_scales.append(s) dt_biases.append(b) return dt_scales, dt_biases def spatial_norm(latents): nlatents = [] for i in range(len(latents)): latent = latents[i] b, c, h, w = latent.shape s = latent.std(dim=[2, 3]).view(1,c,1,1) b = latent.mean(dim=[2, 3]).view(1,c,1,1) nlatents.append((latents[i] - b) / s) return nlatents def local_norm(latents): nlatents = [] for i in range(len(latents)): latent = latents[i] b, c, h, w = latent.shape s = latent.std(dim=[1]).view(1,1,h,w) b = latent.mean(dim=[1]).view(1,1,h,w) nlatents.append((latents[i] - b) / s) return nlatents if __name__ == "__main__": #### options torch.backends.cudnn.benchmark = True srg_analyze = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../experiments/train_exd_imgset_srflow/train_exd_imgset_srflow.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) model = ExtensibleTrainer(opt) gen = model.networks['generator'] gen.eval() mode = "latent_transfer" imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\val2\\lr\\*" desired_size = None # (640,640) # <- Required when doing style transfer. scale = 2 resample_factor = 2 # When != 1, the HR image is upsampled by this factor using a bicubic to get the local latents. temperature = .65 output_path = "E:\\4k6k\\mmsr\\results\\latent_playground" # Data types <- used to perform latent transfer. data_path = "F:\\4k6k\\datasets\\ns_images\\imagesets\\images-half" data_type_filters = ["*alexa*", "*lanette*", "*80755*", "*x-art-1912*", "*joli_high*", "*stacy-cruz*"] #data_type_filters = ["*lanette*"] max_ref_datatypes = 30 # Only picks this many images from the above data types to sample from. interpolation_steps = 30 with torch.no_grad(): # Fetch the images to resample. resample_imgs = [] img_files = glob(imgs_to_resample_pattern) for i, img_file in enumerate(img_files): if i > 5: break t = image_2_tensor(img_file, desired_size).to(model.env['device']) if resample_factor != 1: t = F.interpolate(t, scale_factor=resample_factor, mode="bicubic") resample_imgs.append(t) # Fetch the latent metrics & latents for each image we are resampling. latents = fetch_latents_for_images(gen, resample_imgs, scale) multiple_latents = False if mode == "restore": for i, latent_set in enumerate(latents): latents[i] = local_norm(spatial_norm(latent_set)) latents[i] = [l * temperature for l in latents[i]] elif mode == "feed_through": latents = [torch.randn_like(l) * temperature for l in latents[i]] elif mode == "latent_transfer": # Just get the **one** result for each pattern and use that latent. dt_imgs = [glob(os.path.join(data_path, p))[-5] for p in data_type_filters] dt_transfers = [image_2_tensor(i, desired_size) for i in dt_imgs] # Downsample the images because they are often just too big to feed through the network (probably needs to be parameterized) for j in range(len(dt_transfers)): if min(dt_transfers[j].shape[2], dt_transfers[j].shape[3]) > 1600: dt_transfers[j] = F.interpolate(dt_transfers[j], scale_factor=1/2, mode='area') corruptor = ImageCorruptor({'fixed_corruptions':['jpeg-low', 'gaussian_blur_5']}) def corrupt_and_downsample(img, scale): img = F.interpolate(img, scale_factor=1/scale, mode="area") from data.util import torch2cv, cv2torch cvimg = torch2cv(img) cvimg = corruptor.corrupt_images([cvimg])[0] img = cv2torch(cvimg) torchvision.utils.save_image(img, "corrupted_lq_%i.png" % (random.randint(0,100),)) return img dt_latents = [fetch_latents_for_image(gen, i, scale, corrupt_and_downsample) for i in dt_transfers] tlatents = [] for lat in latents: dts = [] for slat in dt_latents: assert slat[0].shape[2] >= lat[0].shape[2] assert slat[0].shape[3] >= lat[0].shape[3] dts.append([sl[:,:,:l.shape[2],:l.shape[3]] * temperature for l, sl in zip(lat, slat)]) tlatents.append(dts) latents = tlatents multiple_latents = True # Re-compute each image with the new metrics for i, img in enumerate(resample_imgs): if not multiple_latents: lats = [latents[i]] else: lats = latents[i] for j in range(len(lats)): hr, _ = gen(lr=F.interpolate(img, scale_factor=1/scale, mode="area"), z=lats[j][0], reverse=True, epses=lats[j], add_gt_noise=False) os.makedirs(os.path.join(output_path), exist_ok=True) torchvision.utils.save_image(hr, os.path.join(output_path, "%i_%i.png" % (i,j)))