import os
import os
import random

import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
from tqdm import tqdm

from data.audio.unsupervised_audio_dataset import load_audio
from data.util import find_files_of_type, is_audio_file
from models.tacotron2.taco_utils import load_filepaths_and_text
from models.tacotron2.text import text_to_sequence
from utils.util import opt_get


def load_tsv(filename):
    with open(filename, encoding='utf-8') as f:
        components = [line.strip().split('\t') for line in f]
        base = os.path.dirname(filename)
        filepaths_and_text = [[os.path.join(base, f'{component[1]}'), component[0]] for component in components]
    return filepaths_and_text


def load_mozilla_cv(filename):
    with open(filename, encoding='utf-8') as f:
        components = [line.strip().split('\t') for line in f][1:]  # First line is the header
        base = os.path.dirname(filename)
        filepaths_and_text = [[os.path.join(base, f'clips/{component[1]}'), component[2]] for component in components]
    return filepaths_and_text


def load_voxpopuli(filename):
    with open(filename, encoding='utf-8') as f:
        lines = [line.strip().split('\t') for line in f][1:]  # First line is the header
        base = os.path.dirname(filename)
        filepaths_and_text = []
        for line in lines:
            if len(line) == 0:
                continue
            file, raw_text, norm_text, speaker_id, split, gender = line
            year = file[:4]
            filepaths_and_text.append([os.path.join(base, year, f'{file}.ogg.wav'), raw_text])
    return filepaths_and_text


class TextWavLoader(torch.utils.data.Dataset):
    def __init__(self, hparams):
        self.path = hparams['path']
        if not isinstance(self.path, list):
            self.path = [self.path]

        fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
        if not isinstance(fetcher_mode, list):
            fetcher_mode = [fetcher_mode]
        assert len(self.path) == len(fetcher_mode)

        self.load_conditioning = opt_get(hparams, ['load_conditioning'], False)
        self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 3)
        self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
        self.audiopaths_and_text = []
        for p, fm in zip(self.path, fetcher_mode):
            if fm == 'lj' or fm == 'libritts':
                fetcher_fn = load_filepaths_and_text
            elif fm == 'tsv':
                fetcher_fn = load_tsv
            elif fm == 'mozilla_cv':
                assert not self.load_conditioning  # Conditioning inputs are incompatible with mozilla_cv
                fetcher_fn = load_mozilla_cv
            elif fm == 'voxpopuli':
                assert not self.load_conditioning  # Conditioning inputs are incompatible with voxpopuli
                fetcher_fn = load_voxpopuli
            else:
                raise NotImplementedError()
            self.audiopaths_and_text.extend(fetcher_fn(p))
        self.text_cleaners = hparams.text_cleaners
        self.sample_rate = hparams.sample_rate
        random.seed(hparams.seed)
        random.shuffle(self.audiopaths_and_text)
        self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
        self.max_text_len = opt_get(hparams, ['max_text_length'], None)
        # If needs_collate=False, all outputs will be aligned and padded at maximum length.
        self.needs_collate = opt_get(hparams, ['needs_collate'], True)
        if not self.needs_collate:
            assert self.max_wav_len is not None and self.max_text_len is not None

    def get_wav_text_pair(self, audiopath_and_text):
        # separate filename and text
        audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
        text_seq = self.get_text(text)
        wav = load_audio(audiopath, self.sample_rate)
        return (text_seq, wav, text, audiopath_and_text[0])

    def get_text(self, text):
        text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
        return text_norm

    def load_conditioning_candidates(self, path):
        candidates = find_files_of_type('img', os.path.dirname(path), qualifier=is_audio_file)[0]
        assert len(candidates) < 50000  # Sanity check to ensure we aren't loading "related files" that aren't actually related.
        if len(candidates) == 0:
            print(f"No conditioning candidates found for {path} (not even the clip itself??)")
            raise NotImplementedError()
        # Sample with replacement. This can get repeats, but more conveniently handles situations where there are not enough candidates.
        related_clips = []
        for k in range(self.conditioning_candidates):
            rel_clip = load_audio(random.choice(candidates), self.sample_rate)
            gap = rel_clip.shape[-1] - self.conditioning_length
            if gap < 0:
                rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
            elif gap > 0:
                rand_start = random.randint(0, gap)
                rel_clip = rel_clip[:, rand_start:rand_start+self.conditioning_length]
            related_clips.append(rel_clip)
        return torch.stack(related_clips, dim=0)

    def __getitem__(self, index):
        try:
            tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
            cond = self.load_conditioning_candidates(self.audiopaths_and_text[index][0]) if self.load_conditioning else None
        except:
            print(f"error loading {self.audiopaths_and_text[index][0]}")
            return self[index+1]
        if wav is None or \
            (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \
            (self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
            # Basically, this audio file is nonexistent or too long to be supported by the dataset.
            # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result.
            #if wav is not None:
            #    print(f"Exception {index} wav_len:{wav.shape[-1]} text_len:{tseq.shape[0]} fname: {path}")
            rv = random.randint(0,len(self)-1)
            return self[rv]
        orig_output = wav.shape[-1]
        orig_text_len = tseq.shape[0]
        if not self.needs_collate:
            if wav.shape[-1] != self.max_wav_len:
                wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
            if tseq.shape[0] != self.max_text_len:
                tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
            res = {
                'real_text': text,
                'padded_text': tseq,
                'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
                'wav': wav,
                'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
                'filenames': path
            }
            if self.load_conditioning:
                res['conditioning'] = cond
            return res
        return tseq, wav, path, text, cond

    def __len__(self):
        return len(self.audiopaths_and_text)


class TextMelCollate():
    """ Zero-pads model inputs and targets based on number of frames per step
    """
    def __call__(self, batch):
        """Collate's training batch from normalized text and wav
        PARAMS
        ------
        batch: [text_normalized, wav, filename, text]
        """
        # Right zero-pad all one-hot text sequences to max input length
        input_lengths, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([len(x[0]) for x in batch]),
            dim=0, descending=True)
        max_input_len = input_lengths[0]

        text_padded = torch.LongTensor(len(batch), max_input_len)
        text_padded.zero_()
        filenames = []
        real_text = []
        conds = []
        for i in range(len(ids_sorted_decreasing)):
            text = batch[ids_sorted_decreasing[i]][0]
            text_padded[i, :text.size(0)] = text
            filenames.append(batch[ids_sorted_decreasing[i]][2])
            real_text.append(batch[ids_sorted_decreasing[i]][3])
            c = batch[ids_sorted_decreasing[i]][4]
            if c is not None:
                conds.append(c)

        # Right zero-pad wav
        num_wavs = batch[0][1].size(0)
        max_target_len = max([x[1].size(1) for x in batch])

        # include mel padded and gate padded
        wav_padded = torch.FloatTensor(len(batch), num_wavs, max_target_len)
        wav_padded.zero_()
        output_lengths = torch.LongTensor(len(batch))
        for i in range(len(ids_sorted_decreasing)):
            wav = batch[ids_sorted_decreasing[i]][1]
            wav_padded[i, :, :wav.size(1)] = wav
            output_lengths[i] = wav.size(1)

        res = {
            'padded_text': text_padded,
            'text_lengths': input_lengths,
            'wav': wav_padded,
            'wav_lengths': output_lengths,
            'filenames': filenames,
            'real_text': real_text,
        }
        if len(conds) > 0:
            res['conditioning'] = torch.stack(conds)
        return res


if __name__ == '__main__':
    batch_sz = 8
    params = {
        'mode': 'nv_tacotron',
        'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
        'fetcher_mode': ['libritts'],
        'phase': 'train',
        'n_workers': 0,
        'batch_size': batch_sz,
        'needs_collate': False,
        'max_wav_length': 255995,
        'max_text_length': 200,
        'sample_rate': 22050,
        'load_conditioning': True,
        'num_conditioning_candidates': 3,
        'conditioning_length': 44100,
    }
    from data import create_dataset, create_dataloader

    ds, c = create_dataset(params, return_collate=True)
    dl = create_dataloader(ds, params, collate_fn=c)
    i = 0
    m = None
    for i, b in tqdm(enumerate(dl)):
        if i > 5:
            break
        w = b['wav']
        for ib in range(batch_sz):
            print(f'{i} {ib} {b["real_text"][ib]}')
            torchaudio.save(f'{i}_clip_{ib}.wav', b['wav'][ib], ds.sample_rate)
            for c in range(3):
                torchaudio.save(f'{i}_clip_{ib}_cond{c}.wav', b['conditioning'][ib, c], ds.sample_rate)