import random import numpy as np import cv2 import torch import torch.utils.data as data import data.util as util from PIL import Image, ImageOps from io import BytesIO import torchvision.transforms.functional as F # Reads full-quality images and pulls tiles at regular zoom intervals from them. Only usable for training purposes. from data.image_corruptor import ImageCorruptor class MultiScaleDataset(data.Dataset): def __init__(self, opt): super(MultiScaleDataset, self).__init__() self.opt = opt self.data_type = 'img' self.tile_size = self.opt['hq_tile_size'] self.num_scales = self.opt['num_scales'] self.hq_size_cap = self.tile_size * 2 ** self.num_scales self.scale = self.opt['scale'] self.paths_hq, self.sizes_hq = util.get_image_paths(self.data_type, opt['paths'], [1 for _ in opt['paths']]) self.corruptor = ImageCorruptor(opt) # Selects the smallest dimension from the image and crops it randomly so the other dimension matches. The cropping # offset from center is chosen on a normal probability curve. def get_square_image(self, image): h, w, _ = image.shape if h == w: return image offset = max(min(np.random.normal(scale=.3), 1.0), -1.0) if h > w: diff = h - w center = diff // 2 top = int(center + offset * (center - 2)) return image[top:top+w, :, :] else: diff = w - h center = diff // 2 left = int(center + offset * (center - 2)) return image[:, left:left+h, :] def recursively_extract_patches(self, input_img, result_list, depth): if depth >= self.num_scales: return patch_size = self.hq_size_cap // (2 ** depth) # First pull the four sub-patches. Important: if this is changed, be sure to edit build_multiscale_patch_index_map() below. patches = [input_img[:patch_size, :patch_size], input_img[:patch_size, patch_size:], input_img[patch_size:, :patch_size], input_img[patch_size:, patch_size:]] result_list.extend([cv2.resize(p, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA) for p in patches]) for p in patches: self.recursively_extract_patches(p, result_list, depth+1) def __getitem__(self, index): # get full size image full_path = self.paths_hq[index % len(self.paths_hq)] img_full = util.read_img(None, full_path, None) img_full = util.channel_convert(img_full.shape[2], 'RGB', [img_full])[0] img_full = util.augment([img_full], True, True)[0] img_full = self.get_square_image(img_full) img_full = cv2.resize(img_full, (self.hq_size_cap, self.hq_size_cap), interpolation=cv2.INTER_AREA) patches_hq = [cv2.resize(img_full, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA)] self.recursively_extract_patches(img_full, patches_hq, 1) # Image corruption is applied against the full size image for this dataset. img_corrupted = self.corruptor.corrupt_images([img_full])[0] patches_hq_corrupted = [cv2.resize(img_corrupted, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA)] self.recursively_extract_patches(img_corrupted, patches_hq_corrupted, 1) # BGR to RGB, HWC to CHW, numpy to tensor if patches_hq[0].shape[2] == 3: patches_hq = [cv2.cvtColor(p, cv2.COLOR_BGR2RGB) for p in patches_hq] patches_hq_corrupted = [cv2.cvtColor(p, cv2.COLOR_BGR2RGB) for p in patches_hq_corrupted] patches_hq = [torch.from_numpy(np.ascontiguousarray(np.transpose(p, (2, 0, 1)))).float() for p in patches_hq] patches_hq = torch.stack(patches_hq, dim=0) patches_hq_corrupted = [torch.from_numpy(np.ascontiguousarray(np.transpose(p, (2, 0, 1)))).float() for p in patches_hq_corrupted] patches_lq = [torch.nn.functional.interpolate(p.unsqueeze(0), scale_factor=1/self.scale, mode='area').squeeze() for p in patches_hq_corrupted] patches_lq = torch.stack(patches_lq, dim=0) d = {'LQ': patches_lq, 'GT': patches_hq, 'GT_path': full_path} return d def __len__(self): return len(self.paths_hq) class MultiscaleTreeNode: def __init__(self, index, parent, i): self.index = index self.parent = parent self.children = [] # These represent the offset from left and top of the image for the individual patch as a proportion of the entire image. # Tightly tied to the implementation above for the order in which the patches are pulled from the base image. lefts = [0, .5, 0, .5] tops = [0, 0, .5, .5] self.left = lefts[i] self.top = tops[i] def add_child(self, child): self.children.append(child) return child def build_multiscale_patch_index_map(depth): if depth < 0: return root = MultiscaleTreeNode(0, None, 0) leaves = [] _build_multiscale_patch_index_map(depth-1, 1, root, leaves) return leaves def _build_multiscale_patch_index_map(depth, ind, node, leaves): subnodes = [node.add_child(MultiscaleTreeNode(ind+i, node, i)) for i in range(4)] ind += 4 if depth == 1: leaves.extend(subnodes) else: for n in subnodes: ind = _build_multiscale_patch_index_map(depth-1, ind, n, leaves) return ind if __name__ == '__main__': opt = { 'name': 'amalgam', 'paths': ['F:\\4k6k\\datasets\\images\\div2k\\DIV2K_train_HR'], 'num_scales': 4, 'scale': 2, 'hq_tile_size': 128, 'fixed_corruptions': ['jpeg'], 'random_corruptions': ['gaussian_blur', 'motion-blur', 'noise-5'], 'num_corrupts_per_image': 1, 'corruption_blur_scale': 5 } import torchvision ds = MultiScaleDataset(opt) import os os.makedirs("debug", exist_ok=True) multiscale_tree = build_multiscale_patch_index_map(4) for i in range(500, len(ds)): quadrant=2 print(i) o = ds[random.randint(0, len(ds))] tree_ind = random.randint(0, len(multiscale_tree)) for k, v in o.items(): if 'path' in k: continue depth = 0 node = multiscale_tree[tree_ind] #for j, img in enumerate(v): # torchvision.utils.save_image(img.unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, j)) while node is not None: torchvision.utils.save_image(v[node.index].unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, depth)) depth += 1 node = node.parent