import torch from torch.utils.data import Dataset import torchvision.transforms as T from torchvision import datasets # Wrapper for basic pytorch datasets which re-wraps them into a format usable by ExtensibleTrainer. from utils.util import opt_get class TorchDataset(Dataset): def __init__(self, opt): DATASET_MAP = { "mnist": datasets.MNIST, "fmnist": datasets.FashionMNIST, "cifar10": datasets.CIFAR10, "cifar100": datasets.CIFAR100, "imagenet": datasets.ImageNet, "imagefolder": datasets.ImageFolder } normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if opt_get(opt, ['random_crop'], False): transforms = [ T.RandomResizedCrop(opt['image_size']), T.RandomHorizontalFlip(), T.ToTensor(), normalize, ] else: transforms = [ T.Resize(opt['image_size']), T.CenterCrop(opt['image_size']), T.RandomHorizontalFlip(), T.ToTensor(), normalize, ] transforms = T.Compose(transforms) self.dataset = DATASET_MAP[opt['dataset']](transform=transforms, **opt['kwargs']) self.len = opt['fixed_len'] if 'fixed_len' in opt.keys() else len(self.dataset) def __getitem__(self, item): underlying_item, lbl = self.dataset[item] return {'lq': underlying_item, 'hq': underlying_item, 'labels': lbl, 'LQ_path': str(item), 'GT_path': str(item)} def __len__(self): return self.len if __name__ == '__main__': opt = { 'flip': True, 'crop_sz': None, 'dataset': 'cifar100', 'image_size': 32, 'normalize': True, 'kwargs': { 'root': 'E:\\4k6k\\datasets\\images\\cifar100', 'download': True } } set = TorchDataset(opt) j = set[0]