import os.path as osp from data import util import torch import numpy as np # Iterable that reads all the images in a directory that contains a reference image, tile images and center coordinates. class ChunkWithReference: def __init__(self, opt, path): self.opt = opt self.path = path.path self.ref = None # This is loaded on the fly. self.cache_ref = opt['cache_ref'] if 'cache_ref' in opt.keys() else True self.tiles, _ = util.get_image_paths('img', path) self.centers = None def __getitem__(self, item): # Load centers on the fly and always cache. if self.centers is None: self.centers = torch.load(osp.join(self.path, "centers.pt")) if self.cache_ref: if self.ref is None: self.ref = util.read_img(None, osp.join(self.path, "ref.jpg"), rgb=True) self.centers = torch.load(osp.join(self.path, "centers.pt")) ref = self.ref else: self.ref = util.read_img(None, osp.join(self.path, "ref.jpg"), rgb=True) tile = util.read_img(None, self.tiles[item], rgb=True) tile_id = int(osp.splitext(osp.basename(self.tiles[item]))[0]) center, tile_width = self.centers[tile_id] mask = np.full(tile.shape[:2] + (1,), fill_value=.1, dtype=tile.dtype) mask[center[0] - tile_width // 2:center[0] + tile_width // 2, center[1] - tile_width // 2:center[1] + tile_width // 2] = 1 return tile, ref, center, mask, self.tiles[item] def __len__(self): return len(self.tiles)