import torch from torch import nn from switched_conv import BareConvSwitch, compute_attention_specificity, AttentionNorm import torch.nn.functional as F import functools from collections import OrderedDict from models.archs.arch_util import ConvBnLelu, ConvGnSilu, ExpansionBlock, ExpansionBlock2, ConvGnLelu, MultiConvBlock, SiLU from switched_conv_util import save_attention_to_image_rgb import os from torch.utils.checkpoint import checkpoint from models.archs.spinenet_arch import SpineNet # Set to true to relieve memory pressure by using torch.utils.checkpoint in several memory-critical locations. memory_checkpointing_enabled = True # VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation # Doubles the input filter count. class HalvingProcessingBlock(nn.Module): def __init__(self, filters): super(HalvingProcessingBlock, self).__init__() self.bnconv1 = ConvGnSilu(filters, filters * 2, stride=2, norm=False, bias=False) self.bnconv2 = ConvGnSilu(filters * 2, filters * 2, norm=True, bias=False) def forward(self, x): x = self.bnconv1(x) return self.bnconv2(x) # This is a classic u-net architecture with the goal of assigning each individual pixel an individual transform # switching set. class ConvBasisMultiplexer(nn.Module): def __init__(self, input_channels, base_filters, reductions, processing_depth, multiplexer_channels, use_gn=True, use_exp2=False): super(ConvBasisMultiplexer, self).__init__() self.filter_conv = ConvGnSilu(input_channels, base_filters, bias=True) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(base_filters * 2 ** i) for i in range(reductions)]) reduction_filters = base_filters * 2 ** reductions self.processing_blocks = nn.Sequential(OrderedDict([('block%i' % (i,), ConvGnSilu(reduction_filters, reduction_filters, bias=False)) for i in range(processing_depth)])) if use_exp2: self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(reductions)]) else: self.expansion_blocks = nn.ModuleList([ExpansionBlock(reduction_filters // (2 ** i)) for i in range(reductions)]) gap = base_filters - multiplexer_channels cbl1_out = ((base_filters - (gap // 2)) // 4) * 4 # Must be multiples of 4 to use with group norm. self.cbl1 = ConvGnSilu(base_filters, cbl1_out, norm=use_gn, bias=False, num_groups=4) cbl2_out = ((base_filters - (3 * gap // 4)) // 4) * 4 self.cbl2 = ConvGnSilu(cbl1_out, cbl2_out, norm=use_gn, bias=False, num_groups=4) self.cbl3 = ConvGnSilu(cbl2_out, multiplexer_channels, bias=True, norm=False) def forward(self, x): x = self.filter_conv(x) reduction_identities = [] for b in self.reduction_blocks: reduction_identities.append(x) x = b(x) x = self.processing_blocks(x) for i, b in enumerate(self.expansion_blocks): x = b(x, reduction_identities[-i - 1]) x = self.cbl1(x) x = self.cbl2(x) x = self.cbl3(x) return x # torch.gather() which operates across 2d images. def gather_2d(input, index): b, c, h, w = input.shape nodim = input.view(b, c, h * w) ind_nd = index[:, 0]*w + index[:, 1] ind_nd = ind_nd.unsqueeze(1) ind_nd = ind_nd.repeat((1, c)) ind_nd = ind_nd.unsqueeze(2) result = torch.gather(nodim, dim=2, index=ind_nd) result = result.squeeze() if b == 1: result = result.unsqueeze(0) return result # Computes a linear latent by performing processing on the reference image and returning the filters of a single point, # which should be centered on the image patch being processed. # # Output is base_filters * 8. class ReferenceImageBranch(nn.Module): def __init__(self, base_filters=64): super(ReferenceImageBranch, self).__init__() self.filter_conv = ConvGnSilu(4, base_filters, bias=True) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(base_filters * 2 ** i) for i in range(3)]) reduction_filters = base_filters * 2 ** 3 self.processing_blocks = nn.Sequential(OrderedDict([('block%i' % (i,), ConvGnSilu(reduction_filters, reduction_filters, bias=False)) for i in range(4)])) # center_point is a [b,2] long tensor describing the center point of where the patch was taken from the reference # image. def forward(self, x, center_point): x = self.filter_conv(x) reduction_identities = [] for b in self.reduction_blocks: reduction_identities.append(x) x = b(x) x = self.processing_blocks(x) return gather_2d(x, center_point // 8) class AdaInConvBlock(nn.Module): def __init__(self, reference_size, in_nc, out_nc, conv_block=ConvGnLelu): super(AdaInConvBlock, self).__init__() self.filter_conv = conv_block(in_nc, out_nc, activation=True, norm=False, bias=False) self.ref_proc = nn.Linear(reference_size, reference_size) self.ref_red = nn.Linear(reference_size, out_nc * 2) self.feature_norm = torch.nn.InstanceNorm2d(out_nc) self.style_norm = torch.nn.InstanceNorm1d(out_nc) self.post_fuse_conv = conv_block(out_nc, out_nc, activation=False, norm=True, bias=True) def forward(self, x, ref): x = self.feature_norm(self.filter_conv(x)) ref = self.ref_proc(ref) ref = self.ref_red(ref) b, c = ref.shape ref = self.style_norm(ref.view(b, 2, c // 2)) x = x * ref[:, 0, :].unsqueeze(dim=2).unsqueeze(dim=3).expand(x.shape) + ref[:, 1, :].unsqueeze(dim=2).unsqueeze(dim=3).expand(x.shape) return self.post_fuse_conv(x) class ProcessingBranchWithStochasticity(nn.Module): def __init__(self, nf_in, nf_out, noise_filters, depth): super(ProcessingBranchWithStochasticity, self).__init__() nf_gap = nf_out - nf_in self.noise_filters = noise_filters self.processor = MultiConvBlock(nf_in + noise_filters, nf_in + nf_gap // 2, nf_out, kernel_size=3, depth=depth, weight_init_factor = .1) def forward(self, x): b, c, h, w = x.shape noise = torch.randn((b, self.noise_filters, h, w), device=x.device) return self.processor(torch.cat([x, noise], dim=1)) # This is similar to ConvBasisMultiplexer, except that it takes a linear reference tensor as a second input to # provide better results. It also has fixed parameterization in several places class ReferencingConvMultiplexer(nn.Module): def __init__(self, input_channels, base_filters, multiplexer_channels, use_gn=True): super(ReferencingConvMultiplexer, self).__init__() self.style_fuse = AdaInConvBlock(512, input_channels, base_filters, ConvGnSilu) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(base_filters * 2 ** i) for i in range(3)]) reduction_filters = base_filters * 2 ** 3 self.processing_blocks = nn.Sequential(OrderedDict([('block%i' % (i,), ConvGnSilu(reduction_filters, reduction_filters, bias=False)) for i in range(2)])) self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(3)]) gap = base_filters - multiplexer_channels cbl1_out = ((base_filters - (gap // 2)) // 4) * 4 # Must be multiples of 4 to use with group norm. self.cbl1 = ConvGnSilu(base_filters, cbl1_out, norm=use_gn, bias=False, num_groups=4) cbl2_out = ((base_filters - (3 * gap // 4)) // 4) * 4 self.cbl2 = ConvGnSilu(cbl1_out, cbl2_out, norm=use_gn, bias=False, num_groups=4) self.cbl3 = ConvGnSilu(cbl2_out, multiplexer_channels, bias=True, norm=False) def forward(self, x, ref): x = self.style_fuse(x, ref) reduction_identities = [] for b in self.reduction_blocks: reduction_identities.append(x) x = b(x) x = self.processing_blocks(x) for i, b in enumerate(self.expansion_blocks): x = b(x, reduction_identities[-i - 1]) x = self.cbl1(x) x = self.cbl2(x) x = self.cbl3(x) return x class ConfigurableSwitchComputer(nn.Module): def __init__(self, base_filters, multiplexer_net, pre_transform_block, transform_block, transform_count, attention_norm, init_temp=20, add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=False): super(ConfigurableSwitchComputer, self).__init__() tc = transform_count self.multiplexer = multiplexer_net(tc) if pre_transform_block: self.pre_transform = pre_transform_block() else: self.pre_transform = None self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)]) self.add_noise = add_scalable_noise_to_transforms self.feed_transforms_into_multiplexer = feed_transforms_into_multiplexer self.noise_scale = nn.Parameter(torch.full((1,), float(1e-3))) # And the switch itself, including learned scalars self.switch = BareConvSwitch(initial_temperature=init_temp, attention_norm=AttentionNorm(transform_count, accumulator_size=16 * transform_count) if attention_norm else None) self.switch_scale = nn.Parameter(torch.full((1,), float(1))) self.post_switch_conv = ConvBnLelu(base_filters, base_filters, norm=False, bias=True) # The post_switch_conv gets a low scale initially. The network can decide to magnify it (or not) # depending on its needs. self.psc_scale = nn.Parameter(torch.full((1,), float(.1))) # Regarding inputs: it is acceptable to pass in a tuple/list as an input for (x), but the first element # *must* be the actual parameter that gets fed through the network - it is assumed to be the identity. def forward(self, x, output_attention_weights=False, identity=None, att_in=None, fixed_scale=1): if isinstance(x, tuple): x1 = x[0] else: x1 = x if att_in is None: att_in = x if identity is None: identity = x1 if self.add_noise: rand_feature = torch.randn_like(x1) * self.noise_scale if isinstance(x, tuple): x = (x1 + rand_feature,) + x[1:] else: x = x1 + rand_feature if not isinstance(x, tuple): x = (x,) if self.pre_transform: x = self.pre_transform(*x) if not isinstance(x, tuple): x = (x,) if memory_checkpointing_enabled: xformed = [checkpoint(t, *x) for t in self.transforms] else: xformed = [t(*x) for t in self.transforms] if not isinstance(att_in, tuple): att_in = (att_in,) if self.feed_transforms_into_multiplexer: att_in = att_in + (torch.stack(xformed, dim=1),) if memory_checkpointing_enabled: m = checkpoint(self.multiplexer, *att_in) else: m = self.multiplexer(*att_in) # It is assumed that [xformed] and [m] are collapsed into tensors at this point. outputs, attention = self.switch(xformed, m, True) outputs = identity + outputs * self.switch_scale * fixed_scale outputs = outputs + self.post_switch_conv(outputs) * self.psc_scale * fixed_scale if output_attention_weights: return outputs, attention else: return outputs def set_temperature(self, temp): self.switch.set_attention_temperature(temp) class ConfigurableSwitchedResidualGenerator2(nn.Module): def __init__(self, switch_depth, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers, transformation_filters, attention_norm, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1, heightened_final_step=50000, upsample_factor=1, add_scalable_noise_to_transforms=False): super(ConfigurableSwitchedResidualGenerator2, self).__init__() switches = [] self.initial_conv = ConvBnLelu(3, transformation_filters, norm=False, activation=False, bias=True) self.upconv1 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True) self.upconv2 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True) self.hr_conv = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True) self.final_conv = ConvBnLelu(transformation_filters, 3, norm=False, activation=False, bias=True) for _ in range(switch_depth): multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, switch_filters, switch_reductions, switch_processing_layers, trans_counts) pretransform_fn = functools.partial(ConvBnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1) transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5), transformation_filters, kernel_size=trans_kernel_sizes, depth=trans_layers, weight_init_factor=.1) switches.append(ConfigurableSwitchComputer(transformation_filters, multiplx_fn, pre_transform_block=pretransform_fn, transform_block=transform_fn, attention_norm=attention_norm, transform_count=trans_counts, init_temp=initial_temp, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)) self.switches = nn.ModuleList(switches) self.transformation_counts = trans_counts self.init_temperature = initial_temp self.final_temperature_step = final_temperature_step self.heightened_temp_min = heightened_temp_min self.heightened_final_step = heightened_final_step self.attentions = None self.upsample_factor = upsample_factor assert self.upsample_factor == 2 or self.upsample_factor == 4 def forward(self, x): # This is a common bug when evaluating SRG2 generators. It needs to be configured properly in eval mode. Just fail. if not self.train: assert self.switches[0].switch.temperature == 1 x = self.initial_conv(x) self.attentions = [] for i, sw in enumerate(self.switches): x, att = sw.forward(x, True) self.attentions.append(att) x = self.upconv1(F.interpolate(x, scale_factor=2, mode="nearest")) if self.upsample_factor > 2: x = F.interpolate(x, scale_factor=2, mode="nearest") x = self.upconv2(x) x = self.final_conv(self.hr_conv(x)) return x, x def set_temperature(self, temp): [sw.set_temperature(temp) for sw in self.switches] def update_for_step(self, step, experiments_path='.'): if self.attentions: temp = max(1, 1 + self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step) if temp == 1 and self.heightened_final_step and step > self.final_temperature_step and \ self.heightened_final_step != 1: # Once the temperature passes (1) it enters an inverted curve to match the linear curve from above. # without this, the attention specificity "spikes" incredibly fast in the last few iterations. h_steps_total = self.heightened_final_step - self.final_temperature_step h_steps_current = min(step - self.final_temperature_step, h_steps_total) # The "gap" will represent the steps that need to be traveled as a linear function. h_gap = 1 / self.heightened_temp_min temp = h_gap * h_steps_current / h_steps_total # Invert temperature to represent reality on this side of the curve temp = 1 / temp self.set_temperature(temp) if step % 50 == 0: output_path = os.path.join(experiments_path, "attention_maps", "a%i") prefix = "attention_map_%i_%%i.png" % (step,) [save_attention_to_image_rgb(output_path % (i,), self.attentions[i], self.transformation_counts, prefix, step) for i in range(len(self.attentions))] def get_debug_values(self, step): temp = self.switches[0].switch.temperature mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions] means = [i[0] for i in mean_hists] hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists] val = {"switch_temperature": temp} for i in range(len(means)): val["switch_%i_specificity" % (i,)] = means[i] val["switch_%i_histogram" % (i,)] = hists[i] return val # This class encapsulates an encoder based on an object detection network backbone whose purpose is to generated a # structured embedding encoding what is in an image patch. This embedding can then be used to perform structured # alterations to the underlying image. # # Caveat: Since this uses a pre-defined (and potentially pre-trained) SpineNet backbone, it has a minimum-supported # image size, which is 128x128. In order to use 64x64 patches, you must set interpolate_first=True. though this will # degrade quality. class BackboneEncoder(nn.Module): def __init__(self, interpolate_first=True, pretrained_backbone=None): super(BackboneEncoder, self).__init__() self.interpolate_first = interpolate_first # Uses dual spinenets, one for the input patch and the other for the reference image. self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True) self.ref_spine = SpineNet('49', in_channels=3, use_input_norm=True) self.merge_process1 = ConvGnSilu(512, 512, kernel_size=1, activation=True, norm=False, bias=True) self.merge_process2 = ConvGnSilu(512, 384, kernel_size=1, activation=True, norm=True, bias=False) self.merge_process3 = ConvGnSilu(384, 256, kernel_size=1, activation=False, norm=False, bias=True) if pretrained_backbone is not None: loaded_params = torch.load(pretrained_backbone) self.ref_spine.load_state_dict(loaded_params['state_dict'], strict=True) self.patch_spine.load_state_dict(loaded_params['state_dict'], strict=True) # Returned embedding will have been reduced in size by a factor of 8 (4 if interpolate_first=True). # Output channels are always 256. # ex, 64x64 input with interpolate_first=True will result in tensor of shape [bx256x16x16] def forward(self, x, ref, ref_center_point): if self.interpolate_first: x = F.interpolate(x, scale_factor=2, mode="bicubic") # Don't interpolate ref - assume it is fed in at the proper resolution. # ref = F.interpolate(ref, scale_factor=2, mode="bicubic") # [ref] will have a 'mask' channel which we cannot use with pretrained spinenet. ref = ref[:, :3, :, :] ref_emb = checkpoint(self.ref_spine, ref)[0] ref_code = gather_2d(ref_emb, ref_center_point // 8) # Divide by 8 to bring the center point to the correct location. patch = checkpoint(self.patch_spine, x)[0] ref_code_expanded = ref_code.view(-1, 256, 1, 1).repeat(1, 1, patch.shape[2], patch.shape[3]) combined = self.merge_process1(torch.cat([patch, ref_code_expanded], dim=1)) combined = self.merge_process2(combined) combined = self.merge_process3(combined) return combined class BackboneEncoderNoRef(nn.Module): def __init__(self, interpolate_first=True, pretrained_backbone=None): super(BackboneEncoderNoRef, self).__init__() self.interpolate_first = interpolate_first self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True) if pretrained_backbone is not None: loaded_params = torch.load(pretrained_backbone) self.patch_spine.load_state_dict(loaded_params['state_dict'], strict=True) # Returned embedding will have been reduced in size by a factor of 8 (4 if interpolate_first=True). # Output channels are always 256. # ex, 64x64 input with interpolate_first=True will result in tensor of shape [bx256x16x16] def forward(self, x): if self.interpolate_first: x = F.interpolate(x, scale_factor=2, mode="bicubic") patch = checkpoint(self.patch_spine, x)[0] return patch class BackboneSpinenetNoHead(nn.Module): def __init__(self): super(BackboneSpinenetNoHead, self).__init__() self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True) def forward(self, x): patch = checkpoint(self.patch_spine, x)[0] return patch class ResBlock(nn.Module): def __init__(self, nf, downsample): super(ResBlock, self).__init__() nf_int = nf * 2 nf_out = nf * 2 if downsample else nf stride = 2 if downsample else 1 self.c1 = ConvGnSilu(nf, nf_int, kernel_size=3, bias=False, activation=True, norm=True) self.c2 = ConvGnSilu(nf_int, nf_int, stride=stride, kernel_size=3, bias=False, activation=True, norm=True) self.c3 = ConvGnSilu(nf_int, nf_out, kernel_size=3, bias=False, activation=False, norm=True) if downsample: self.downsample = ConvGnSilu(nf, nf_out, kernel_size=1, stride=stride, bias=False, activation=False, norm=True) else: self.downsample = None self.act = SiLU() def forward(self, x): identity = x branch = self.c1(x) branch = self.c2(branch) branch = self.c3(branch) if self.downsample: identity = self.downsample(identity) return self.act(identity + branch) class BackboneResnet(nn.Module): def __init__(self): super(BackboneResnet, self).__init__() self.initial_conv = ConvGnSilu(3, 64, kernel_size=7, bias=True, activation=False, norm=False) self.sequence = nn.Sequential( ResBlock(64, downsample=False), ResBlock(64, downsample=True), ResBlock(128, downsample=False), ResBlock(128, downsample=True), ResBlock(256, downsample=False), ResBlock(256, downsample=False)) def forward(self, x): fea = self.initial_conv(x) return self.sequence(fea) # Note to future self: # Can I do a real transformer here? Such as by having the multiplexer be able to toggle off of transformations by # their output? The embedding will be used as the "Query" to the "QueryxKey=Value" relationship. # Mutiplexer that combines a structured embedding with a contextual switch input to guide alterations to that input. # # Implemented as basically a u-net which reduces the input into the same structural space as the embedding, combines the # two, then expands back into the original feature space. class EmbeddingMultiplexer(nn.Module): # Note: reductions=2 if the encoder is using interpolated input, otherwise reductions=3. def __init__(self, nf, multiplexer_channels, reductions=2): super(EmbeddingMultiplexer, self).__init__() self.embedding_process = MultiConvBlock(256, 256, 256, kernel_size=3, depth=3, norm=True) self.filter_conv = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(nf * 2 ** i) for i in range(reductions)]) reduction_filters = nf * 2 ** reductions self.processing_blocks = nn.Sequential( ConvGnSilu(reduction_filters + 256, reduction_filters + 256, kernel_size=1, activation=True, norm=False, bias=True), ConvGnSilu(reduction_filters + 256, reduction_filters + 128, kernel_size=1, activation=True, norm=True, bias=False), ConvGnSilu(reduction_filters + 128, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False), ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False)) self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(reductions)]) gap = nf - multiplexer_channels cbl1_out = ((nf - (gap // 2)) // 4) * 4 # Must be multiples of 4 to use with group norm. self.cbl1 = ConvGnSilu(nf, cbl1_out, norm=True, bias=False, num_groups=4) cbl2_out = ((nf - (3 * gap // 4)) // 4) * 4 self.cbl2 = ConvGnSilu(cbl1_out, cbl2_out, norm=True, bias=False, num_groups=4) self.cbl3 = ConvGnSilu(cbl2_out, multiplexer_channels, bias=True, norm=False) def forward(self, x, embedding): x = self.filter_conv(x) embedding = self.embedding_process(embedding) reduction_identities = [] for b in self.reduction_blocks: reduction_identities.append(x) x = b(x) x = self.processing_blocks(torch.cat([x, embedding], dim=1)) for i, b in enumerate(self.expansion_blocks): x = b(x, reduction_identities[-i - 1]) x = self.cbl1(x) x = self.cbl2(x) x = self.cbl3(x) return x class QueryKeyMultiplexer(nn.Module): def __init__(self, nf, multiplexer_channels, reductions=2): super(QueryKeyMultiplexer, self).__init__() # Blocks used to create the query self.input_process = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True) self.embedding_process = ConvGnSilu(256, 256, activation=True, norm=False, bias=True) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(nf * 2 ** i) for i in range(reductions)]) reduction_filters = nf * 2 ** reductions self.processing_blocks = nn.Sequential( ConvGnSilu(reduction_filters + 256, reduction_filters + 256, kernel_size=1, activation=True, norm=False, bias=True), ConvGnSilu(reduction_filters + 256, reduction_filters + 128, kernel_size=1, activation=True, norm=True, bias=False), ConvGnSilu(reduction_filters + 128, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False), ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False)) self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(reductions)]) # Blocks used to create the key self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=True) # Postprocessing blocks. self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=1, activation=True, norm=False, bias=False) self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=True, bias=False, num_groups=4) self.cbl2 = ConvGnSilu(nf // 2, 1, kernel_size=1, norm=False, bias=False) def forward(self, x, embedding, transformations): q = self.input_process(x) embedding = self.embedding_process(embedding) reduction_identities = [] for b in self.reduction_blocks: reduction_identities.append(q) q = b(q) q = self.processing_blocks(torch.cat([q, embedding], dim=1)) for i, b in enumerate(self.expansion_blocks): q = b(q, reduction_identities[-i - 1]) b, t, f, h, w = transformations.shape k = transformations.view(b * t, f, h, w) k = self.key_process(k) q = q.view(b, 1, f, h, w).repeat(1, t, 1, 1, 1).view(b * t, f, h, w) v = self.query_key_combine(torch.cat([q, k], dim=1)) v = self.cbl1(v) v = self.cbl2(v) return v.view(b, t, h, w) if __name__ == '__main__': bb = BackboneEncoder(64) emb = QueryKeyMultiplexer(64, 10) x = torch.randn(4,3,64,64) r = torch.randn(4,3,128,128) xu = torch.randn(4,64,64,64) cp = torch.zeros((4,2), dtype=torch.long) trans = [torch.randn(4,64,64,64) for t in range(10)] b = bb(x, r, cp) emb(xu, b, trans)