# Tool that can be used to add a new layer into an existing model save file. Primarily useful for "progressive" # models which can be trained piecemeal. import options.options as option from models import create_model import torch import os def get_model_for_opt_file(filename): opt = option.parse(filename, is_train=True) opt = option.dict_to_nonedict(opt) model = create_model(opt) return model, opt def copy_state_dict_list(l_from, l_to): for i, v in enumerate(l_from): if isinstance(v, list): copy_state_dict_list(v, l_to[i]) elif isinstance(v, dict): copy_state_dict(v, l_to[i]) else: l_to[i] = v def copy_state_dict(dict_from, dict_to): for k in dict_from.keys(): if k == 'optimizers': for j in range(len(dict_from[k][0]['param_groups'])): for p in dict_to[k][0]['param_groups'][j]['params']: del dict_to[k][0]['state'] dict_to[k][0]['param_groups'][j] = dict_from[k][0]['param_groups'][j] dict_to[k][0]['state'].update(dict_from[k][0]['state']) print(len(dict_from[k][0].keys()), dict_from[k][0].keys()) print(len(dict_to[k][0].keys()), dict_to[k][0].keys()) assert k in dict_to.keys() if isinstance(dict_from[k], dict): copy_state_dict(dict_from[k], dict_to[k]) elif isinstance(dict_from[k], list): copy_state_dict_list(dict_from[k], dict_to[k]) else: dict_to[k] = dict_from[k] return dict_to if __name__ == "__main__": os.chdir("..") torch.backends.cudnn.benchmark = True want_just_images = True model_from, opt_from = get_model_for_opt_file("../options/train_imgset_pixgan_progressive_srg2.yml") model_to, _ = get_model_for_opt_file("../options/train_imgset_pixgan_progressive_srg2_.yml") ''' model_to.netG.module.update_for_step(1000000000000) l = torch.nn.MSELoss() o, _ = model_to.netG(torch.randn(1, 3, 64, 64)) l(o, torch.randn_like(o)).backward() model_to.optimizer_G.step() o = model_to.netD(torch.randn(1, 3, 128, 128)) l(o, torch.randn_like(o)).backward() model_to.optimizer_D.step() ''' torch.save(copy_state_dict(model_from.netG.state_dict(), model_to.netG.state_dict()), "converted_g.pth") torch.save(copy_state_dict(model_from.netD.state_dict(), model_to.netD.state_dict()), "converted_d.pth") # Also convert the state. resume_state_from = torch.load(opt_from['path']['resume_state']) resume_state_to = model_to.save_training_state(0, 0, return_state=True) resume_state_from['optimizers'][0]['param_groups'].append(resume_state_to['optimizers'][0]['param_groups'][-1]) torch.save(resume_state_from, "converted_state.pth")