# Converts from Tensorflow Stylegan2 weights to weights used by this model. # Original source: https://raw.githubusercontent.com/rosinality/stylegan2-pytorch/master/convert_weight.py # Adapted to lucidrains' Stylegan implementation. # # Also doesn't require you to install Tensorflow 1.15 or clone the nVidia repo. import argparse import os import sys import pickle import math import torch import numpy as np from torchvision import utils from models.archs.stylegan.stylegan2_rosinality import Generator, Discriminator # Converts from the TF state_dict input provided into the vars originally expected from the rosinality converter. def get_vars(vars, source_name): net_name = source_name.split('/')[0] vars_as_tuple_list = vars[net_name]['variables'] result_vars = {} for t in vars_as_tuple_list: result_vars[t[0]] = t[1] return result_vars, source_name.replace(net_name + "/", "") def get_vars_direct(vars, source_name): v, n = get_vars(vars, source_name) return v[n] def convert_modconv(vars, source_name, target_name, flip=False): vars, source_name = get_vars(vars, source_name) weight = vars[source_name + "/weight"] mod_weight = vars[source_name + "/mod_weight"] mod_bias = vars[source_name + "/mod_bias"] noise = vars[source_name + "/noise_strength"] bias = vars[source_name + "/bias"] dic = { "conv.weight": np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), "conv.modulation.weight": mod_weight.transpose((1, 0)), "conv.modulation.bias": mod_bias + 1, "noise.weight": np.array([noise]), "activate.bias": bias, } dic_torch = {} for k, v in dic.items(): dic_torch[target_name + "." + k] = torch.from_numpy(v) if flip: dic_torch[target_name + ".conv.weight"] = torch.flip( dic_torch[target_name + ".conv.weight"], [3, 4] ) return dic_torch def convert_conv(vars, source_name, target_name, bias=True, start=0): vars, source_name = get_vars(vars, source_name) weight = vars[source_name + "/weight"] dic = {"weight": weight.transpose((3, 2, 0, 1))} if bias: dic["bias"] = vars[source_name + "/bias"] dic_torch = {} dic_torch[target_name + f".{start}.weight"] = torch.from_numpy(dic["weight"]) if bias: dic_torch[target_name + f".{start + 1}.bias"] = torch.from_numpy(dic["bias"]) return dic_torch def convert_torgb(vars, source_name, target_name): vars, source_name = get_vars(vars, source_name) weight = vars[source_name + "/weight"] mod_weight = vars[source_name + "/mod_weight"] mod_bias = vars[source_name + "/mod_bias"] bias = vars[source_name + "/bias"] dic = { "conv.weight": np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), "conv.modulation.weight": mod_weight.transpose((1, 0)), "conv.modulation.bias": mod_bias + 1, "bias": bias.reshape((1, 3, 1, 1)), } dic_torch = {} for k, v in dic.items(): dic_torch[target_name + "." + k] = torch.from_numpy(v) return dic_torch def convert_dense(vars, source_name, target_name): vars, source_name = get_vars(vars, source_name) weight = vars[source_name + "/weight"] bias = vars[source_name + "/bias"] dic = {"weight": weight.transpose((1, 0)), "bias": bias} dic_torch = {} for k, v in dic.items(): dic_torch[target_name + "." + k] = torch.from_numpy(v) return dic_torch def update(state_dict, new): for k, v in new.items(): state_dict[k] = v def discriminator_fill_statedict(statedict, vars, size): log_size = int(math.log(size, 2)) update(statedict, convert_conv(vars, f"{size}x{size}/FromRGB", "convs.0")) conv_i = 1 for i in range(log_size - 2, 0, -1): reso = 4 * 2 ** i update( statedict, convert_conv(vars, f"{reso}x{reso}/Conv0", f"convs.{conv_i}.conv1"), ) update( statedict, convert_conv( vars, f"{reso}x{reso}/Conv1_down", f"convs.{conv_i}.conv2", start=1 ), ) update( statedict, convert_conv( vars, f"{reso}x{reso}/Skip", f"convs.{conv_i}.skip", start=1, bias=False ), ) conv_i += 1 update(statedict, convert_conv(vars, f"4x4/Conv", "final_conv")) update(statedict, convert_dense(vars, f"4x4/Dense0", "final_linear.0")) update(statedict, convert_dense(vars, f"Output", "final_linear.1")) return statedict def fill_statedict(state_dict, vars, size): log_size = int(math.log(size, 2)) for i in range(8): update(state_dict, convert_dense(vars, f"G_mapping/Dense{i}", f"style.{i + 1}")) update( state_dict, { "input.input": torch.from_numpy( get_vars_direct(vars, "G_synthesis/4x4/Const/const") ) }, ) update(state_dict, convert_torgb(vars, "G_synthesis/4x4/ToRGB", "to_rgb1")) for i in range(log_size - 2): reso = 4 * 2 ** (i + 1) update( state_dict, convert_torgb(vars, f"G_synthesis/{reso}x{reso}/ToRGB", f"to_rgbs.{i}"), ) update(state_dict, convert_modconv(vars, "G_synthesis/4x4/Conv", "conv1")) conv_i = 0 for i in range(log_size - 2): reso = 4 * 2 ** (i + 1) update( state_dict, convert_modconv( vars, f"G_synthesis/{reso}x{reso}/Conv0_up", f"convs.{conv_i}", flip=True, ), ) update( state_dict, convert_modconv( vars, f"G_synthesis/{reso}x{reso}/Conv1", f"convs.{conv_i + 1}" ), ) conv_i += 2 for i in range(0, (log_size - 2) * 2 + 1): update( state_dict, { f"noises.noise_{i}": torch.from_numpy( get_vars_direct(vars, f"G_synthesis/noise{i}") ) }, ) return state_dict if __name__ == "__main__": device = "cuda" parser = argparse.ArgumentParser( description="Tensorflow to pytorch model checkpoint converter" ) parser.add_argument( "--gen", action="store_true", help="convert the generator weights" ) parser.add_argument( "--disc", action="store_true", help="convert the discriminator weights" ) parser.add_argument( "--channel_multiplier", type=int, default=2, help="channel multiplier factor. config-f = 2, else = 1", ) parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights") args = parser.parse_args() sys.path.append('scripts\\stylegan2') import dnnlib from dnnlib.tflib.network import generator, discriminator, gen_ema with open(args.path, "rb") as f: pickle.load(f) # Weight names are ordered by size. The last name will be something like '1024x1024/'. We just need to grab that first number. size = int(generator['G_synthesis']['variables'][-1][0].split('x')[0]) g = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier) state_dict = g.state_dict() state_dict = fill_statedict(state_dict, gen_ema, size) g.load_state_dict(state_dict, strict=True) latent_avg = torch.from_numpy(get_vars_direct(gen_ema, "G/dlatent_avg")) ckpt = {"g_ema": state_dict, "latent_avg": latent_avg} if args.gen: g_train = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier) g_train_state = g_train.state_dict() g_train_state = fill_statedict(g_train_state, generator, size) ckpt["g"] = g_train_state if args.disc: disc = Discriminator(size, channel_multiplier=args.channel_multiplier) d_state = disc.state_dict() d_state = discriminator_fill_statedict(d_state, discriminator.vars, size) ckpt["d"] = d_state name = os.path.splitext(os.path.basename(args.path))[0] torch.save(ckpt, name + ".pt") batch_size = {256: 16, 512: 9, 1024: 4} n_sample = batch_size.get(size, 25) g = g.to(device) z = np.random.RandomState(0).randn(n_sample, 512).astype("float32") with torch.no_grad(): img_pt, _ = g( [torch.from_numpy(z).to(device)], truncation=0.5, truncation_latent=latent_avg.to(device), randomize_noise=False, ) utils.save_image( img_pt, name + ".png", nrow=n_sample, normalize=True, range=(-1, 1) )