forked from mrq/DL-Art-School
f217216c81
Implements a ResGenv2 architecture which slightly increases the complexity of the final output layer but causes it to be shared across all skip outputs.
197 lines
7.9 KiB
Python
197 lines
7.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
import torch.nn.functional as F
|
|
|
|
|
|
__all__ = ['FixupResNet', 'fixup_resnet18', 'fixup_resnet34', 'fixup_resnet50', 'fixup_resnet101', 'fixup_resnet152']
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=1, bias=False)
|
|
|
|
def conv5x5(in_planes, out_planes, stride=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride,
|
|
padding=2, bias=False)
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
"""1x1 convolution"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
|
|
|
|
|
class FixupBasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, conv_create=conv3x3):
|
|
super(FixupBasicBlock, self).__init__()
|
|
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
|
self.bias1a = nn.Parameter(torch.zeros(1))
|
|
self.conv1 = conv_create(inplanes, planes, stride)
|
|
self.bias1b = nn.Parameter(torch.zeros(1))
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
self.bias2a = nn.Parameter(torch.zeros(1))
|
|
self.conv2 = conv_create(planes, planes)
|
|
self.scale = nn.Parameter(torch.ones(1))
|
|
self.bias2b = nn.Parameter(torch.zeros(1))
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
|
|
out = self.conv1(x + self.bias1a)
|
|
out = self.lrelu(out + self.bias1b)
|
|
|
|
out = self.conv2(out + self.bias2a)
|
|
out = out * self.scale + self.bias2b
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x + self.bias1a)
|
|
|
|
out += identity
|
|
out = self.lrelu(out)
|
|
|
|
return out
|
|
|
|
|
|
class FixupResNet(nn.Module):
|
|
|
|
def __init__(self, block, layers, upscale_applications=2, num_filters=64):
|
|
super(FixupResNet, self).__init__()
|
|
self.num_layers = sum(layers) + layers[-1] # The last layer is applied twice to achieve 4x upsampling.
|
|
self.inplanes = num_filters
|
|
self.upscale_applications = upscale_applications
|
|
# Part 1 - Process raw input image. Most denoising should appear here and this should be the most complicated
|
|
# part of the block.
|
|
self.conv1 = nn.Conv2d(3, num_filters, kernel_size=5, stride=1, padding=2,
|
|
bias=False)
|
|
self.bias1 = nn.Parameter(torch.zeros(1))
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
self.layer1 = self._make_layer(block, num_filters, layers[0], stride=1)
|
|
self.skip1 = nn.Conv2d(num_filters, 3, kernel_size=5, stride=1, padding=2, bias=False)
|
|
self.skip1_bias = nn.Parameter(torch.zeros(1))
|
|
|
|
# Part 2 - This is the upsampler core. It consists of a normal multiplicative conv followed by several residual
|
|
# convs which are intended to repair artifacts caused by 2x interpolation.
|
|
# This core layer should by itself accomplish 2x super-resolution. We use it in repeat to do the
|
|
# requested SR.
|
|
self.nf2 = int(num_filters/4)
|
|
# This part isn't repeated. It de-filters the output from the previous step to fit the filter size used in the
|
|
# upsampler-conv.
|
|
self.upsampler_conv = nn.Conv2d(num_filters, self.nf2, kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.uc_bias = nn.Parameter(torch.zeros(1))
|
|
self.inplanes = self.nf2
|
|
|
|
if layers[1] > 0:
|
|
# This is the repeated part.
|
|
self.layer2 = self._make_layer(block, int(self.nf2), layers[1], stride=1, conv_type=conv5x5)
|
|
self.skip2 = nn.Conv2d(self.nf2, 3, kernel_size=5, stride=1, padding=2, bias=False)
|
|
self.skip2_bias = nn.Parameter(torch.zeros(1))
|
|
|
|
self.final_defilter = nn.Conv2d(self.nf2, 3, kernel_size=5, stride=1, padding=2, bias=True)
|
|
self.bias2 = nn.Parameter(torch.zeros(1))
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, FixupBasicBlock):
|
|
nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.5))
|
|
nn.init.constant_(m.conv2.weight, 0)
|
|
if m.downsample is not None:
|
|
nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:]))))
|
|
'''
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.constant_(m.weight, 0)
|
|
nn.init.constant_(m.bias, 0)'''
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, conv_type=conv3x3):
|
|
defilter = None
|
|
if self.inplanes != planes * block.expansion:
|
|
defilter = conv1x1(self.inplanes, planes * block.expansion, stride)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, defilter))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, conv_create=conv_type))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.lrelu(x + self.bias1)
|
|
x = self.layer1(x)
|
|
skip_lo = self.skip1(x) + self.skip1_bias
|
|
|
|
x = self.lrelu(self.upsampler_conv(x) + self.uc_bias)
|
|
if self.upscale_applications > 0:
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
x = self.layer2(x)
|
|
skip_med = self.skip2(x) + self.skip2_bias
|
|
else:
|
|
skip_med = skip_lo
|
|
|
|
if self.upscale_applications > 1:
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
x = self.layer2(x)
|
|
|
|
x = self.final_defilter(x) + self.bias2
|
|
return x, skip_med, skip_lo
|
|
|
|
class FixupResNetV2(FixupResNet):
|
|
def __init__(self, **kwargs):
|
|
super(FixupResNetV2, self).__init__(**kwargs)
|
|
# Use one unified filter-to-image stack, not the previous skip stacks.
|
|
self.skip1 = None
|
|
self.skip1_bias = None
|
|
self.skip2 = None
|
|
self.skip2_bias = None
|
|
# The new filter-to-image stack will be 2 conv layers deep, not 1.
|
|
self.final_process = nn.Conv2d(self.nf2, self.nf2, kernel_size=5, stride=1, padding=2, bias=True)
|
|
self.bias2 = nn.Parameter(torch.zeros(1))
|
|
self.fp_bn = nn.BatchNorm2d(self.nf2)
|
|
self.final_defilter = nn.Conv2d(self.nf2, 3, kernel_size=3, stride=1, padding=1, bias=True)
|
|
self.bias3 = nn.Parameter(torch.zeros(1))
|
|
|
|
def filter_to_image(self, filter):
|
|
x = self.final_process(filter) + self.bias2
|
|
x = self.lrelu(self.fp_bn(x))
|
|
x = self.final_defilter(x) + self.bias3
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.lrelu(x + self.bias1)
|
|
x = self.layer1(x)
|
|
x = self.lrelu(self.upsampler_conv(x) + self.uc_bias)
|
|
|
|
skip_lo = self.filter_to_image(x)
|
|
if self.upscale_applications > 0:
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
x = self.layer2(x)
|
|
skip_med = self.filter_to_image(x)
|
|
|
|
if self.upscale_applications > 1:
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
x = self.layer2(x)
|
|
|
|
x = self.filter_to_image(x)
|
|
return x, skip_med, skip_lo
|
|
|
|
def fixup_resnet34(nb_denoiser=20, nb_upsampler=10, **kwargs):
|
|
"""Constructs a Fixup-ResNet-34 model.
|
|
"""
|
|
model = FixupResNet(FixupBasicBlock, [nb_denoiser, nb_upsampler], **kwargs)
|
|
return model
|
|
|
|
def fixup_resnet34_v2(nb_denoiser=20, nb_upsampler=10, **kwargs):
|
|
"""Constructs a Fixup-ResNet-34 model.
|
|
"""
|
|
kwargs['block'] = FixupBasicBlock
|
|
kwargs['layers'] = [nb_denoiser, nb_upsampler]
|
|
model = FixupResNetV2(**kwargs)
|
|
return model
|
|
|
|
|
|
__all__ = ['FixupResNet', 'fixup_resnet34', 'fixup_resnet34_v2'] |