forked from mrq/DL-Art-School
379b96eb55
This also fixes the initialization weight for the configurable generator.
216 lines
10 KiB
Python
216 lines
10 KiB
Python
import torch
|
|
from torch import nn
|
|
from switched_conv import BareConvSwitch, compute_attention_specificity
|
|
import torch.nn.functional as F
|
|
import functools
|
|
from models.archs.arch_util import initialize_weights
|
|
from switched_conv_util import save_attention_to_image
|
|
|
|
|
|
class ConvBnLelu(nn.Module):
|
|
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True):
|
|
super(ConvBnLelu, self).__init__()
|
|
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
|
|
assert kernel_size in padding_map.keys()
|
|
self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size])
|
|
self.bn = nn.BatchNorm2d(filters_out)
|
|
if lelu:
|
|
self.lelu = nn.LeakyReLU(negative_slope=.1)
|
|
else:
|
|
self.lelu = None
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
if self.lelu:
|
|
return self.lelu(x)
|
|
else:
|
|
return x
|
|
|
|
|
|
class ResidualBranch(nn.Module):
|
|
def __init__(self, filters_in, filters_out, kernel_size, depth):
|
|
super(ResidualBranch, self).__init__()
|
|
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_out, kernel_size)] +
|
|
[ConvBnLelu(filters_out, filters_out, kernel_size) for i in range(depth-2)] +
|
|
[ConvBnLelu(filters_out, filters_out, kernel_size, lelu=False)])
|
|
self.scale = nn.Parameter(torch.ones(1))
|
|
self.bias = nn.Parameter(torch.zeros(1))
|
|
|
|
def forward(self, x):
|
|
for m in self.bnconvs:
|
|
x = m.forward(x)
|
|
return x * self.scale + self.bias
|
|
|
|
|
|
# VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation
|
|
# Doubles the input filter count.
|
|
class HalvingProcessingBlock(nn.Module):
|
|
def __init__(self, filters):
|
|
super(HalvingProcessingBlock, self).__init__()
|
|
self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2)
|
|
self.bnconv2 = ConvBnLelu(filters * 2, filters * 2)
|
|
|
|
def forward(self, x):
|
|
x = self.bnconv1(x)
|
|
return self.bnconv2(x)
|
|
|
|
|
|
class SwitchComputer(nn.Module):
|
|
def __init__(self, channels_in, filters, transform_block, transform_count, reduction_blocks, processing_blocks=0, init_temp=20):
|
|
super(SwitchComputer, self).__init__()
|
|
self.filter_conv = ConvBnLelu(channels_in, filters)
|
|
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(filters * 2 ** i) for i in range(reduction_blocks)])
|
|
final_filters = filters * 2 ** reduction_blocks
|
|
self.processing_blocks = nn.ModuleList([ConvBnLelu(final_filters, final_filters) for i in range(processing_blocks)])
|
|
proc_block_filters = max(final_filters // 2, transform_count)
|
|
self.proc_switch_conv = ConvBnLelu(final_filters, proc_block_filters)
|
|
self.final_switch_conv = nn.Conv2d(proc_block_filters, transform_count, 1, 1, 0)
|
|
|
|
# Always include the identity transform (all zeros), hence transform_count-10
|
|
self.transforms = nn.ModuleList([transform_block() for i in range(transform_count-1)])
|
|
|
|
# And the switch itself
|
|
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
|
|
|
def forward(self, x, output_attention_weights=False):
|
|
xformed = [t.forward(x) for t in self.transforms]
|
|
# Append the identity transform.
|
|
xformed.append(torch.zeros_like(xformed[0]))
|
|
|
|
multiplexer = self.filter_conv(x)
|
|
for block in self.reduction_blocks:
|
|
multiplexer = block.forward(multiplexer)
|
|
for block in self.processing_blocks:
|
|
multiplexer = block.forward(multiplexer)
|
|
multiplexer = self.proc_switch_conv(multiplexer)
|
|
multiplexer = self.final_switch_conv.forward(multiplexer)
|
|
# Interpolate the multiplexer across the entire shape of the image.
|
|
multiplexer = F.interpolate(multiplexer, size=x.shape[2:], mode='nearest')
|
|
|
|
return self.switch(xformed, multiplexer, output_attention_weights)
|
|
|
|
def set_temperature(self, temp):
|
|
self.switch.set_attention_temperature(temp)
|
|
|
|
class SwitchedResidualGenerator(nn.Module):
|
|
def __init__(self, switch_filters, initial_temp=20, final_temperature_step=50000):
|
|
super(SwitchedResidualGenerator, self).__init__()
|
|
self.switch1 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=7, depth=3), 4, 4, 0, initial_temp)
|
|
self.switch2 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=5, depth=3), 8, 3, 0, initial_temp)
|
|
self.switch3 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=3, depth=3), 16, 2, 1, initial_temp)
|
|
self.switch4 = SwitchComputer(3, switch_filters * 2, functools.partial(ResidualBranch, 3, 3, kernel_size=3, depth=2), 32, 1, 2, initial_temp)
|
|
initialize_weights([self.switch1, self.switch2, self.switch3, self.switch4], 1)
|
|
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
|
|
initialize_weights([self.switch1.transforms, self.switch2.transforms, self.switch3.transforms, self.switch4.transforms], .05)
|
|
|
|
self.init_temperature = initial_temp
|
|
self.final_temperature_step = final_temperature_step
|
|
self.running_sum = [0, 0, 0, 0]
|
|
self.running_hist = [[],[],[],[]]
|
|
self.running_count = 0
|
|
|
|
def forward(self, x):
|
|
sw1, self.a1 = self.switch1.forward(x, True)
|
|
x = x + sw1
|
|
sw2, self.a2 = self.switch2.forward(x, True)
|
|
x = x + sw2
|
|
sw3, self.a3 = self.switch3.forward(x, True)
|
|
x = x + sw3
|
|
sw4, self.a4 = self.switch4.forward(x, True)
|
|
x = x + sw4
|
|
|
|
a1mean, a1i = compute_attention_specificity(self.a1, 2)
|
|
a2mean, a2i = compute_attention_specificity(self.a2, 2)
|
|
a3mean, a3i = compute_attention_specificity(self.a3, 2)
|
|
a4mean, a4i = compute_attention_specificity(self.a4, 2)
|
|
running_sum = [
|
|
self.running_sum[0] + a1mean,
|
|
self.running_sum[1] + a2mean,
|
|
self.running_sum[2] + a3mean,
|
|
self.running_sum[3] + a4mean,
|
|
]
|
|
self.running_hist[0].append(a1i.detach().cpu().flatten())
|
|
self.running_hist[1].append(a2i.detach().cpu().flatten())
|
|
self.running_hist[2].append(a3i.detach().cpu().flatten())
|
|
self.running_hist[3].append(a4i.detach().cpu().flatten())
|
|
self.running_count += 1
|
|
|
|
return (x,)
|
|
|
|
def set_temperature(self, temp):
|
|
self.switch1.set_temperature(temp)
|
|
self.switch2.set_temperature(temp)
|
|
self.switch3.set_temperature(temp)
|
|
self.switch4.set_temperature(temp)
|
|
|
|
def get_debug_values(self, step):
|
|
# Take the chance to update the temperature here.
|
|
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
|
self.set_temperature(temp)
|
|
|
|
if step % 250 == 0:
|
|
save_attention_to_image(self.a1, 4, step, "a1")
|
|
save_attention_to_image(self.a2, 8, step, "a2", 2)
|
|
save_attention_to_image(self.a3, 16, step, "a3", 4)
|
|
save_attention_to_image(self.a4, 32, step, "a4", 8)
|
|
|
|
val = {"switch_temperature": temp}
|
|
for i in range(len(self.running_sum)):
|
|
val["switch_%i_specificity" % (i,)] = self.running_sum[i] / self.running_count
|
|
val["switch_%i_histogram" % (i,)] = torch.cat(self.running_hist[i])
|
|
self.running_sum[i] = 0
|
|
self.running_hist[i] = []
|
|
self.running_count = 0
|
|
return val
|
|
|
|
|
|
class ConfigurableSwitchedResidualGenerator(nn.Module):
|
|
def __init__(self, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers, initial_temp=20, final_temperature_step=50000):
|
|
super(ConfigurableSwitchedResidualGenerator, self).__init__()
|
|
switches = []
|
|
for filters, sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers):
|
|
switches.append(SwitchComputer(3, filters, functools.partial(ResidualBranch, 3, 3, kernel_size=kernel, depth=layers), trans_count, sw_reduce, sw_proc, initial_temp))
|
|
initialize_weights(switches, 1)
|
|
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
|
|
initialize_weights([s.transforms for s in switches], .2 / len(switches))
|
|
self.switches = nn.ModuleList(switches)
|
|
self.transformation_counts = trans_counts
|
|
self.init_temperature = initial_temp
|
|
self.final_temperature_step = final_temperature_step
|
|
self.running_sum = [0 for i in range(len(switches))]
|
|
self.running_hist = [[] for i in range(len(switches))]
|
|
self.running_count = 0
|
|
|
|
def forward(self, x):
|
|
self.attentions = []
|
|
for i, sw in enumerate(self.switches):
|
|
x, att = sw.forward(x, True)
|
|
self.attentions.append(att)
|
|
spec, hist = compute_attention_specificity(att, 2)
|
|
self.running_sum[i] += spec
|
|
self.running_hist[i].append(hist.detach().cpu().flatten())
|
|
|
|
self.running_count += 1
|
|
|
|
return (x,)
|
|
|
|
def set_temperature(self, temp):
|
|
[sw.set_temperature(temp) for sw in self.switches]
|
|
|
|
def get_debug_values(self, step):
|
|
# Take the chance to update the temperature here.
|
|
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
|
self.set_temperature(temp)
|
|
|
|
if step % 250 == 0:
|
|
[save_attention_to_image(self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,), l_mult=float(self.transformation_counts[i]/4)) for i in range(len(self.switches))]
|
|
|
|
val = {"switch_temperature": temp}
|
|
for i in range(len(self.running_sum)):
|
|
val["switch_%i_specificity" % (i,)] = self.running_sum[i] / self.running_count
|
|
self.running_sum[i] = 0
|
|
val["switch_%i_histogram" % (i,)] = torch.cat(self.running_hist[i])
|
|
self.running_hist[i] = []
|
|
self.running_count = 0
|
|
return val |