forked from mrq/DL-Art-School
c7f3fc4dd9
Moving away from this so it doesn't matter too much. Also fixes an issue with the "ignore" flag.
298 lines
12 KiB
Python
298 lines
12 KiB
Python
"""A multi-thread tool to crop large images to sub-images for faster IO."""
|
|
import os
|
|
import os.path as osp
|
|
import numpy as np
|
|
import cv2
|
|
from PIL import Image
|
|
import data.util as data_util # noqa: E402
|
|
import torch.utils.data as data
|
|
from tqdm import tqdm
|
|
import torch
|
|
|
|
|
|
def main():
|
|
mode = 'single' # single (one input folder) | pair (extract corresponding GT and LR pairs)
|
|
split_img = False
|
|
opt = {}
|
|
opt['n_thread'] = 2
|
|
opt['compression_level'] = 90 # JPEG compression quality rating.
|
|
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
|
|
# compression time. If read raw images during training, use 0 for faster IO speed.
|
|
|
|
if mode == 'single':
|
|
opt['dest'] = 'file'
|
|
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\full_video_segments'
|
|
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\full_video_256_tiled_with_ref'
|
|
opt['crop_sz'] = [256, 512, 1024] # the size of each sub-image
|
|
opt['step'] = [256, 512, 1024] # step of the sliding crop window
|
|
opt['thres_sz'] = 128 # size threshold
|
|
opt['resize_final_img'] = [1, .5, .25]
|
|
opt['only_resize'] = False
|
|
|
|
save_folder = opt['save_folder']
|
|
if not osp.exists(save_folder):
|
|
os.makedirs(save_folder)
|
|
print('mkdir [{:s}] ...'.format(save_folder))
|
|
|
|
if opt['dest'] == 'lmdb':
|
|
writer = LmdbWriter(save_folder)
|
|
else:
|
|
writer = FileWriter(save_folder)
|
|
|
|
extract_single(opt, writer, split_img)
|
|
elif mode == 'pair':
|
|
GT_folder = '../../datasets/div2k/DIV2K_train_HR'
|
|
LR_folder = '../../datasets/div2k/DIV2K_train_LR_bicubic/X4'
|
|
save_GT_folder = '../../datasets/div2k/DIV2K800_sub'
|
|
save_LR_folder = '../../datasets/div2k/DIV2K800_sub_bicLRx4'
|
|
scale_ratio = 4
|
|
crop_sz = 480 # the size of each sub-image (GT)
|
|
step = 240 # step of the sliding crop window (GT)
|
|
thres_sz = 48 # size threshold
|
|
########################################################################
|
|
# check that all the GT and LR images have correct scale ratio
|
|
img_GT_list = data_util._get_paths_from_images(GT_folder)
|
|
img_LR_list = data_util._get_paths_from_images(LR_folder)
|
|
assert len(img_GT_list) == len(img_LR_list), 'different length of GT_folder and LR_folder.'
|
|
for path_GT, path_LR in zip(img_GT_list, img_LR_list):
|
|
img_GT = Image.open(path_GT)
|
|
img_LR = Image.open(path_LR)
|
|
w_GT, h_GT = img_GT.size
|
|
w_LR, h_LR = img_LR.size
|
|
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
|
|
w_GT, scale_ratio, w_LR, path_GT)
|
|
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
|
|
w_GT, scale_ratio, w_LR, path_GT)
|
|
# check crop size, step and threshold size
|
|
assert crop_sz % scale_ratio == 0, 'crop size is not {:d}X multiplication.'.format(
|
|
scale_ratio)
|
|
assert step % scale_ratio == 0, 'step is not {:d}X multiplication.'.format(scale_ratio)
|
|
assert thres_sz % scale_ratio == 0, 'thres_sz is not {:d}X multiplication.'.format(
|
|
scale_ratio)
|
|
print('process GT...')
|
|
opt['input_folder'] = GT_folder
|
|
opt['save_folder'] = save_GT_folder
|
|
opt['crop_sz'] = crop_sz
|
|
opt['step'] = step
|
|
opt['thres_sz'] = thres_sz
|
|
extract_single(opt)
|
|
print('process LR...')
|
|
opt['input_folder'] = LR_folder
|
|
opt['save_folder'] = save_LR_folder
|
|
opt['crop_sz'] = crop_sz // scale_ratio
|
|
opt['step'] = step // scale_ratio
|
|
opt['thres_sz'] = thres_sz // scale_ratio
|
|
extract_single(opt)
|
|
assert len(data_util._get_paths_from_images(save_GT_folder)) == len(
|
|
data_util._get_paths_from_images(
|
|
save_LR_folder)), 'different length of save_GT_folder and save_LR_folder.'
|
|
else:
|
|
raise ValueError('Wrong mode.')
|
|
|
|
|
|
class LmdbWriter:
|
|
def __init__(self, lmdb_path, max_mem_size=30*1024*1024*1024, write_freq=5000):
|
|
self.db = lmdb.open(lmdb_path, subdir=True,
|
|
map_size=max_mem_size, readonly=False,
|
|
meminit=False, map_async=True)
|
|
self.txn = self.db.begin(write=True)
|
|
self.ref_id = 0
|
|
self.tile_ids = {}
|
|
self.writes = 0
|
|
self.write_freq = write_freq
|
|
self.keys = []
|
|
|
|
# Writes the given reference image to the db and returns its ID.
|
|
def write_reference_image(self, ref_img, _):
|
|
id = self.ref_id
|
|
self.ref_id += 1
|
|
self.write_image(id, ref_img[0], ref_img[1])
|
|
return id
|
|
|
|
# Writes a tile image to the db given a reference image and returns its ID.
|
|
def write_tile_image(self, ref_id, tile_image):
|
|
next_tile_id = 0 if ref_id not in self.tile_ids.keys() else self.tile_ids[ref_id]
|
|
self.tile_ids[ref_id] = next_tile_id+1
|
|
full_id = "%i_%i" % (ref_id, next_tile_id)
|
|
self.write_image(full_id, tile_image[0], tile_image[1])
|
|
self.keys.append(full_id)
|
|
return full_id
|
|
|
|
# Writes an image directly to the db with the given reference image and center point.
|
|
def write_image(self, id, img, center_point):
|
|
self.txn.put(u'{}'.format(id).encode('ascii'), pyarrow.serialize(img).to_buffer(), pyarrow.serialize(center_point).to_buffer())
|
|
self.writes += 1
|
|
if self.writes % self.write_freq == 0:
|
|
self.txn.commit()
|
|
self.txn = self.db.begin(write=True)
|
|
|
|
def close(self):
|
|
self.txn.commit()
|
|
with self.db.begin(write=True) as txn:
|
|
txn.put(b'__keys__', pyarrow.serialize(self.keys).to_buffer())
|
|
txn.put(b'__len__', pyarrow.serialize(len(self.keys)).to_buffer())
|
|
self.db.sync()
|
|
self.db.close()
|
|
|
|
|
|
class FileWriter:
|
|
def __init__(self, folder):
|
|
self.folder = folder
|
|
self.next_unique_id = 0
|
|
self.ref_center_points = {} # Maps ref_img basename to a dict of image IDs:center points
|
|
self.ref_ids_to_names = {}
|
|
|
|
def get_next_unique_id(self):
|
|
id = self.next_unique_id
|
|
self.next_unique_id += 1
|
|
return id
|
|
|
|
def save_image(self, ref_path, img_name, img):
|
|
save_path = osp.join(self.folder, ref_path)
|
|
os.makedirs(save_path, exist_ok=True)
|
|
f = open(osp.join(save_path, img_name), "wb")
|
|
f.write(img)
|
|
f.close()
|
|
|
|
# Writes the given reference image to the db and returns its ID.
|
|
def write_reference_image(self, ref_img, path):
|
|
ref_img, _, _ = ref_img # Encoded with a center point, which is irrelevant for the reference image.
|
|
img_name = osp.basename(path).replace(".jpg", "").replace(".png", "")
|
|
self.ref_center_points[img_name] = {}
|
|
self.save_image(img_name, "ref.jpg", ref_img)
|
|
id = self.get_next_unique_id()
|
|
self.ref_ids_to_names[id] = img_name
|
|
return id
|
|
|
|
# Writes a tile image to the db given a reference image and returns its ID.
|
|
def write_tile_image(self, ref_id, tile_image):
|
|
id = self.get_next_unique_id()
|
|
ref_name = self.ref_ids_to_names[ref_id]
|
|
img, center, tile_sz = tile_image
|
|
self.ref_center_points[ref_name][id] = center, tile_sz
|
|
self.save_image(ref_name, "%08i.jpg" % (id,), img)
|
|
return id
|
|
|
|
def flush(self):
|
|
for ref_name, cps in self.ref_center_points.items():
|
|
torch.save(cps, osp.join(self.folder, ref_name, "centers.pt"))
|
|
self.ref_center_points = {}
|
|
|
|
def close(self):
|
|
self.flush()
|
|
|
|
class TiledDataset(data.Dataset):
|
|
def __init__(self, opt, split_mode=False):
|
|
self.split_mode = split_mode
|
|
self.opt = opt
|
|
input_folder = opt['input_folder']
|
|
self.images = data_util._get_paths_from_images(input_folder)
|
|
|
|
def __getitem__(self, index):
|
|
if self.split_mode:
|
|
return self.get(index, True, True).extend(self.get(index, True, False))
|
|
else:
|
|
return self.get(index, False, False)
|
|
|
|
def get_for_scale(self, img, split_mode, left_image, crop_sz, step, resize_factor, ref_resize_factor):
|
|
assert not left_image # Split image not yet supported, False is the default value.
|
|
|
|
thres_sz = self.opt['thres_sz']
|
|
|
|
h, w, c = img.shape
|
|
if split_mode:
|
|
w = w/2
|
|
|
|
h_space = np.arange(0, h - crop_sz + 1, step)
|
|
if h - (h_space[-1] + crop_sz) > thres_sz:
|
|
h_space = np.append(h_space, h - crop_sz)
|
|
w_space = np.arange(0, w - crop_sz + 1, step)
|
|
if w - (w_space[-1] + crop_sz) > thres_sz:
|
|
w_space = np.append(w_space, w - crop_sz)
|
|
|
|
index = 0
|
|
tile_dim = int(crop_sz * resize_factor)
|
|
dsize = (tile_dim, tile_dim)
|
|
results = []
|
|
for x in h_space:
|
|
for y in w_space:
|
|
index += 1
|
|
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
|
|
# Center point needs to be resized by ref_resize_factor - since it is relative to the reference image.
|
|
center_point = (int((x + crop_sz // 2) // ref_resize_factor), int((y + crop_sz // 2) // ref_resize_factor))
|
|
crop_img = np.ascontiguousarray(crop_img)
|
|
if 'resize_final_img' in self.opt.keys():
|
|
crop_img = cv2.resize(crop_img, dsize, interpolation=cv2.INTER_AREA)
|
|
success, buffer = cv2.imencode(".jpg", crop_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
|
|
assert success
|
|
results.append((buffer, center_point, int(crop_sz // ref_resize_factor)))
|
|
return results
|
|
|
|
def get(self, index, split_mode, left_img):
|
|
path = self.images[index]
|
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
|
|
|
# We must convert the image into a square. Crop the image so that only the center is left, since this is often
|
|
# the most salient part of the image.
|
|
if len(img.shape) == 2: # Greyscale not supported.
|
|
return None
|
|
h, w, c = img.shape
|
|
dim = min(h, w)
|
|
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
|
|
|
|
h, w, c = img.shape
|
|
# Uncomment to filter any image that doesnt meet a threshold size.
|
|
if min(h,w) < 512:
|
|
return None
|
|
left = 0
|
|
right = w
|
|
if split_mode:
|
|
if left_img:
|
|
left = 0
|
|
right = int(w/2)
|
|
else:
|
|
left = int(w/2)
|
|
right = w
|
|
img = img[:, left:right]
|
|
|
|
tile_dim = int(self.opt['crop_sz'][0] * self.opt['resize_final_img'][0])
|
|
dsize = (tile_dim, tile_dim)
|
|
ref_resize_factor = h / tile_dim
|
|
|
|
# Reference image should always be first entry in results.
|
|
ref_img = cv2.resize(img, dsize, interpolation=cv2.INTER_AREA)
|
|
success, ref_buffer = cv2.imencode(".jpg", ref_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
|
|
assert success
|
|
results = [(ref_buffer, (-1,-1), (-1,-1))]
|
|
|
|
for crop_sz, resize_factor, step in zip(self.opt['crop_sz'], self.opt['resize_final_img'], self.opt['step']):
|
|
results.extend(self.get_for_scale(img, split_mode, left_img, crop_sz, step, resize_factor, ref_resize_factor))
|
|
return results, path
|
|
|
|
def __len__(self):
|
|
return len(self.images)
|
|
|
|
|
|
def identity(x):
|
|
return x
|
|
|
|
def extract_single(opt, writer, split_img=False):
|
|
dataset = TiledDataset(opt, split_img)
|
|
dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity)
|
|
tq = tqdm(dataloader)
|
|
for imgs in tq:
|
|
if imgs is None or imgs[0] is None:
|
|
continue
|
|
imgs, path = imgs[0]
|
|
if imgs is None or len(imgs) <= 1:
|
|
continue
|
|
ref_id = writer.write_reference_image(imgs[0], path)
|
|
for tile in imgs[1:]:
|
|
writer.write_tile_image(ref_id, tile)
|
|
writer.flush()
|
|
writer.close()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|