forked from mrq/DL-Art-School
90 lines
3.7 KiB
Python
90 lines
3.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torchvision
|
|
|
|
|
|
class Discriminator_VGG_128(nn.Module):
|
|
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
|
def __init__(self, in_nc, nf, input_img_factor=1):
|
|
super(Discriminator_VGG_128, self).__init__()
|
|
# [64, 128, 128]
|
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
|
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
|
# [64, 64, 64]
|
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
|
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
|
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
# [128, 32, 32]
|
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
|
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
|
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
# [256, 16, 16]
|
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
|
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
# [512, 8, 8]
|
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
|
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
|
|
self.linear1 = nn.Linear(512 * 4 * input_img_factor * 4 * input_img_factor, 100)
|
|
self.linear2 = nn.Linear(100, 1)
|
|
|
|
# activation function
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
def forward(self, x):
|
|
fea = self.lrelu(self.conv0_0(x))
|
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
|
|
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
|
|
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
|
|
|
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
|
|
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
|
|
|
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
|
|
|
fea = fea.view(fea.size(0), -1)
|
|
fea = self.lrelu(self.linear1(fea))
|
|
out = self.linear2(fea)
|
|
return out
|
|
|
|
|
|
class VGGFeatureExtractor(nn.Module):
|
|
def __init__(self, feature_layer=34, use_bn=False, use_input_norm=True,
|
|
device=torch.device('cpu')):
|
|
super(VGGFeatureExtractor, self).__init__()
|
|
self.use_input_norm = use_input_norm
|
|
if use_bn:
|
|
model = torchvision.models.vgg19_bn(pretrained=True)
|
|
else:
|
|
model = torchvision.models.vgg19(pretrained=True)
|
|
if self.use_input_norm:
|
|
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
|
# [0.485 - 1, 0.456 - 1, 0.406 - 1] if input in range [-1, 1]
|
|
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
|
# [0.229 * 2, 0.224 * 2, 0.225 * 2] if input in range [-1, 1]
|
|
self.register_buffer('mean', mean)
|
|
self.register_buffer('std', std)
|
|
self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)])
|
|
# No need to BP to variable
|
|
for k, v in self.features.named_parameters():
|
|
v.requires_grad = False
|
|
|
|
def forward(self, x):
|
|
# Assume input range is [0, 1]
|
|
if self.use_input_norm:
|
|
x = (x - self.mean) / self.std
|
|
output = self.features(x)
|
|
return output
|