forked from mrq/DL-Art-School
f12f0200d6
parametric efficiency improvements and lets try feeding the timestep into the conditioning encoder
31 lines
1.8 KiB
Python
31 lines
1.8 KiB
Python
import torch
|
|
|
|
|
|
def get_mel2wav_model():
|
|
from models.audio.music.unet_diffusion_waveform_gen_simple import DiffusionWaveformGen
|
|
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1,2,3,4,4],
|
|
num_res_blocks=[3,3,2,2,1], token_conditioning_resolutions=[1,4,16], dropout=0, kernel_size=3, scale_factor=2,
|
|
time_embed_dim_multiplier=4, unconditioned_percentage=0)
|
|
model.load_state_dict(torch.load("../experiments/music_mel2wav.pth", map_location=torch.device('cpu')))
|
|
model.eval()
|
|
return model
|
|
|
|
def get_mel2wav_v3_model():
|
|
from models.audio.music.unet_diffusion_waveform_gen3 import DiffusionWaveformGen
|
|
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1,1.5,2,4],
|
|
num_res_blocks=[2,1,1,0], mid_resnet_depth=24, token_conditioning_resolutions=[1,4],
|
|
dropout=0, time_embed_dim_multiplier=1, unconditioned_percentage=0)
|
|
model.load_state_dict(torch.load("../experiments/music_mel2wav_v3.pth", map_location=torch.device('cpu')))
|
|
model.eval()
|
|
return model
|
|
|
|
def get_music_codegen():
|
|
from models.audio.mel2vec import ContrastiveTrainingWrapper
|
|
model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0,
|
|
mask_time_prob=0,
|
|
mask_time_length=6, num_negatives=100, codebook_size=16, codebook_groups=4,
|
|
disable_custom_linear_init=True, do_reconstruction_loss=True)
|
|
model.load_state_dict(torch.load(f"../experiments/m2v_music.pth", map_location=torch.device('cpu')))
|
|
model = model.eval()
|
|
return model
|