forked from mrq/DL-Art-School
264 lines
15 KiB
Python
264 lines
15 KiB
Python
import functools
|
|
import logging
|
|
from collections import OrderedDict
|
|
|
|
import munch
|
|
import torch
|
|
import torchvision
|
|
from munch import munchify
|
|
import models.stylegan.stylegan2_lucidrains as stylegan2
|
|
|
|
import models.fixup_resnet.DiscriminatorResnet_arch as DiscriminatorResnet_arch
|
|
import models.RRDBNet_arch as RRDBNet_arch
|
|
import models.SwitchedResidualGenerator_arch as SwitchedGen_arch
|
|
import models.discriminator_vgg_arch as SRGAN_arch
|
|
import models.feature_arch as feature_arch
|
|
from models import srg2_classic
|
|
from models.stylegan.Discriminator_StyleGAN import StyleGanDiscriminator
|
|
from models.tecogan.teco_resgen import TecoGen
|
|
from utils.util import opt_get
|
|
|
|
logger = logging.getLogger('base')
|
|
|
|
# Generator
|
|
def define_G(opt, opt_net, scale=None):
|
|
if scale is None:
|
|
scale = opt['scale']
|
|
which_model = opt_net['which_model_G']
|
|
|
|
if 'RRDBNet' in which_model:
|
|
if which_model == 'RRDBNetBypass':
|
|
block = RRDBNet_arch.RRDBWithBypass
|
|
elif which_model == 'RRDBNetLambda':
|
|
from models.lambda_rrdb import LambdaRRDB
|
|
block = LambdaRRDB
|
|
else:
|
|
block = RRDBNet_arch.RRDB
|
|
additive_mode = opt_net['additive_mode'] if 'additive_mode' in opt_net.keys() else 'not'
|
|
output_mode = opt_net['output_mode'] if 'output_mode' in opt_net.keys() else 'hq_only'
|
|
gc = opt_net['gc'] if 'gc' in opt_net.keys() else 32
|
|
initial_stride = opt_net['initial_stride'] if 'initial_stride' in opt_net.keys() else 1
|
|
netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
|
|
mid_channels=opt_net['nf'], num_blocks=opt_net['nb'], additive_mode=additive_mode,
|
|
output_mode=output_mode, body_block=block, scale=opt_net['scale'], growth_channels=gc,
|
|
initial_stride=initial_stride)
|
|
elif which_model == "ConfigurableSwitchedResidualGenerator2":
|
|
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator2(switch_depth=opt_net['switch_depth'], switch_filters=opt_net['switch_filters'],
|
|
switch_reductions=opt_net['switch_reductions'],
|
|
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
|
|
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
|
|
transformation_filters=opt_net['transformation_filters'], attention_norm=opt_net['attention_norm'],
|
|
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
|
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
|
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'],
|
|
for_video=opt_net['for_video'])
|
|
elif which_model == "srg2classic":
|
|
netG = srg2_classic.ConfigurableSwitchedResidualGenerator2(switch_depth=opt_net['switch_depth'], switch_filters=opt_net['switch_filters'],
|
|
switch_reductions=opt_net['switch_reductions'],
|
|
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
|
|
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
|
|
transformation_filters=opt_net['transformation_filters'],
|
|
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
|
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
|
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
|
|
elif which_model == "flownet2":
|
|
from models.flownet2 import FlowNet2
|
|
ld = 'load_path' in opt_net.keys()
|
|
args = munch.Munch({'fp16': False, 'rgb_max': 1.0, 'checkpoint': not ld})
|
|
netG = FlowNet2(args)
|
|
if ld:
|
|
sd = torch.load(opt_net['load_path'])
|
|
netG.load_state_dict(sd['state_dict'])
|
|
elif which_model == "backbone_encoder":
|
|
netG = SwitchedGen_arch.BackboneEncoder(pretrained_backbone=opt_net['pretrained_spinenet'])
|
|
elif which_model == "backbone_encoder_no_ref":
|
|
netG = SwitchedGen_arch.BackboneEncoderNoRef(pretrained_backbone=opt_net['pretrained_spinenet'])
|
|
elif which_model == "backbone_encoder_no_head":
|
|
netG = SwitchedGen_arch.BackboneSpinenetNoHead()
|
|
elif which_model == "backbone_resnet":
|
|
netG = SwitchedGen_arch.BackboneResnet()
|
|
elif which_model == "tecogen":
|
|
netG = TecoGen(opt_net['nf'], opt_net['scale'])
|
|
elif which_model == 'stylegan2':
|
|
is_structured = opt_net['structured'] if 'structured' in opt_net.keys() else False
|
|
attn = opt_net['attn_layers'] if 'attn_layers' in opt_net.keys() else []
|
|
netG = stylegan2.StyleGan2GeneratorWithLatent(image_size=opt_net['image_size'], latent_dim=opt_net['latent_dim'],
|
|
style_depth=opt_net['style_depth'], structure_input=is_structured,
|
|
attn_layers=attn)
|
|
elif which_model == 'srflow':
|
|
from models.srflow import SRFlowNet_arch
|
|
netG = SRFlowNet_arch.SRFlowNet(in_nc=3, out_nc=3, nf=opt_net['nf'], nb=opt_net['nb'], scale=opt_net['scale'],
|
|
K=opt_net['K'], opt=opt)
|
|
elif which_model == 'rrdb_latent_wrapper':
|
|
from models.srflow.RRDBNet_arch import RRDBLatentWrapper
|
|
netG = RRDBLatentWrapper(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
|
|
nf=opt_net['nf'], nb=opt_net['nb'], with_bypass=opt_net['with_bypass'],
|
|
blocks=opt_net['blocks_for_latent'], scale=opt_net['scale'], pretrain_rrdb_path=opt_net['pretrain_path'])
|
|
elif which_model == 'rrdb_centipede':
|
|
output_mode = opt_net['output_mode'] if 'output_mode' in opt_net.keys() else 'hq_only'
|
|
netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
|
|
mid_channels=opt_net['nf'], num_blocks=opt_net['nb'], scale=opt_net['scale'],
|
|
headless=True, output_mode=output_mode)
|
|
elif which_model == 'rrdb_srflow':
|
|
from models.srflow.RRDBNet_arch import RRDBNet
|
|
netG = RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
|
|
nf=opt_net['nf'], nb=opt_net['nb'], scale=opt_net['scale'],
|
|
initial_conv_stride=opt_net['initial_stride'])
|
|
elif which_model == 'igpt2':
|
|
from models.transformers.igpt.gpt2 import iGPT2
|
|
netG = iGPT2(opt_net['embed_dim'], opt_net['num_heads'], opt_net['num_layers'], opt_net['num_pixels'] ** 2, opt_net['num_vocab'], centroids_file=opt_net['centroids_file'])
|
|
elif which_model == 'byol':
|
|
from models.byol.byol_model_wrapper import BYOL
|
|
subnet = define_G(opt, opt_net['subnet'])
|
|
netG = BYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'],
|
|
structural_mlp=opt_get(opt_net, ['use_structural_mlp'], False))
|
|
elif which_model == 'structural_byol':
|
|
from models.byol.byol_structural import StructuralBYOL
|
|
subnet = define_G(opt, opt_net['subnet'])
|
|
netG = StructuralBYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'],
|
|
pretrained_state_dict=opt_get(opt_net, ["pretrained_path"]),
|
|
freeze_until=opt_get(opt_net, ['freeze_until'], 0))
|
|
elif which_model == 'spinenet':
|
|
from models.spinenet_arch import SpineNet
|
|
netG = SpineNet(str(opt_net['arch']), in_channels=3, use_input_norm=opt_net['use_input_norm'])
|
|
elif which_model == 'spinenet_with_logits':
|
|
from models.spinenet_arch import SpinenetWithLogits
|
|
netG = SpinenetWithLogits(str(opt_net['arch']), opt_net['output_to_attach'], opt_net['num_labels'],
|
|
in_channels=3, use_input_norm=opt_net['use_input_norm'])
|
|
elif which_model == 'glean':
|
|
from models.glean.glean import GleanGenerator
|
|
netG = GleanGenerator(opt_net['nf'], opt_net['pretrained_stylegan'])
|
|
else:
|
|
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
|
|
return netG
|
|
|
|
|
|
class GradDiscWrapper(torch.nn.Module):
|
|
def __init__(self, m):
|
|
super(GradDiscWrapper, self).__init__()
|
|
logger.info("Wrapping a discriminator..")
|
|
self.m = m
|
|
|
|
def forward(self, x):
|
|
return self.m(x)
|
|
|
|
def define_D_net(opt_net, img_sz=None, wrap=False):
|
|
which_model = opt_net['which_model_D']
|
|
|
|
if 'image_size' in opt_net.keys():
|
|
img_sz = opt_net['image_size']
|
|
|
|
if which_model == 'discriminator_vgg_128':
|
|
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128, extra_conv=opt_net['extra_conv'])
|
|
elif which_model == 'discriminator_vgg_128_gn':
|
|
extra_conv = opt_net['extra_conv'] if 'extra_conv' in opt_net.keys() else False
|
|
netD = SRGAN_arch.Discriminator_VGG_128_GN(in_nc=opt_net['in_nc'], nf=opt_net['nf'],
|
|
input_img_factor=img_sz / 128, extra_conv=extra_conv)
|
|
if wrap:
|
|
netD = GradDiscWrapper(netD)
|
|
elif which_model == 'discriminator_vgg_128_gn_checkpointed':
|
|
netD = SRGAN_arch.Discriminator_VGG_128_GN(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128, do_checkpointing=True)
|
|
elif which_model == 'stylegan_vgg':
|
|
netD = StyleGanDiscriminator(128)
|
|
elif which_model == 'discriminator_resnet':
|
|
netD = DiscriminatorResnet_arch.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz)
|
|
elif which_model == 'discriminator_resnet_50':
|
|
netD = DiscriminatorResnet_arch.fixup_resnet50(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz)
|
|
elif which_model == 'resnext':
|
|
netD = torchvision.models.resnext50_32x4d(norm_layer=functools.partial(torch.nn.GroupNorm, 8))
|
|
#state_dict = torch.hub.load_state_dict_from_url('https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', progress=True)
|
|
#netD.load_state_dict(state_dict, strict=False)
|
|
netD.fc = torch.nn.Linear(512 * 4, 1)
|
|
elif which_model == 'discriminator_pix':
|
|
netD = SRGAN_arch.Discriminator_VGG_PixLoss(in_nc=opt_net['in_nc'], nf=opt_net['nf'])
|
|
elif which_model == "discriminator_unet":
|
|
netD = SRGAN_arch.Discriminator_UNet(in_nc=opt_net['in_nc'], nf=opt_net['nf'])
|
|
elif which_model == "discriminator_unet_fea":
|
|
netD = SRGAN_arch.Discriminator_UNet_FeaOut(in_nc=opt_net['in_nc'], nf=opt_net['nf'], feature_mode=opt_net['feature_mode'])
|
|
elif which_model == "discriminator_switched":
|
|
netD = SRGAN_arch.Discriminator_switched(in_nc=opt_net['in_nc'], nf=opt_net['nf'], initial_temp=opt_net['initial_temp'],
|
|
final_temperature_step=opt_net['final_temperature_step'])
|
|
elif which_model == "cross_compare_vgg128":
|
|
netD = SRGAN_arch.CrossCompareDiscriminator(in_nc=opt_net['in_nc'], ref_channels=opt_net['ref_channels'] if 'ref_channels' in opt_net.keys() else 3, nf=opt_net['nf'], scale=opt_net['scale'])
|
|
elif which_model == "discriminator_refvgg":
|
|
netD = SRGAN_arch.RefDiscriminatorVgg128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
|
|
elif which_model == "psnr_approximator":
|
|
netD = SRGAN_arch.PsnrApproximator(nf=opt_net['nf'], input_img_factor=img_sz / 128)
|
|
elif which_model == "stylegan2_discriminator":
|
|
attn = opt_net['attn_layers'] if 'attn_layers' in opt_net.keys() else []
|
|
disc = stylegan2.StyleGan2Discriminator(image_size=opt_net['image_size'], input_filters=opt_net['in_nc'], attn_layers=attn)
|
|
netD = stylegan2.StyleGan2Augmentor(disc, opt_net['image_size'], types=opt_net['augmentation_types'], prob=opt_net['augmentation_probability'])
|
|
elif which_model == "rrdb_disc":
|
|
netD = RRDBNet_arch.RRDBDiscriminator(opt_net['in_nc'], opt_net['nf'], opt_net['nb'], blocks_per_checkpoint=3)
|
|
else:
|
|
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
|
|
return netD
|
|
|
|
# Discriminator
|
|
def define_D(opt, wrap=False):
|
|
img_sz = opt['datasets']['train']['target_size']
|
|
opt_net = opt['network_D']
|
|
return define_D_net(opt_net, img_sz, wrap=wrap)
|
|
|
|
def define_fixed_D(opt):
|
|
# Note that this will not work with "old" VGG-style discriminators with dense blocks until the img_size parameter is added.
|
|
net = define_D_net(opt)
|
|
|
|
# Load the model parameters:
|
|
load_net = torch.load(opt['pretrained_path'])
|
|
load_net_clean = OrderedDict() # remove unnecessary 'module.'
|
|
for k, v in load_net.items():
|
|
if k.startswith('module.'):
|
|
load_net_clean[k[7:]] = v
|
|
else:
|
|
load_net_clean[k] = v
|
|
net.load_state_dict(load_net_clean)
|
|
|
|
# Put into eval mode, freeze the parameters and set the 'weight' field.
|
|
net.eval()
|
|
for k, v in net.named_parameters():
|
|
v.requires_grad = False
|
|
net.fdisc_weight = opt['weight']
|
|
|
|
return net
|
|
|
|
|
|
# Define network used for perceptual loss
|
|
def define_F(which_model='vgg', use_bn=False, for_training=False, load_path=None, feature_layers=None):
|
|
if which_model == 'vgg':
|
|
# PyTorch pretrained VGG19-54, before ReLU.
|
|
if feature_layers is None:
|
|
if use_bn:
|
|
feature_layers = [49]
|
|
else:
|
|
feature_layers = [34]
|
|
if for_training:
|
|
netF = feature_arch.TrainableVGGFeatureExtractor(feature_layers=feature_layers, use_bn=use_bn,
|
|
use_input_norm=True)
|
|
else:
|
|
netF = feature_arch.VGGFeatureExtractor(feature_layers=feature_layers, use_bn=use_bn,
|
|
use_input_norm=True)
|
|
elif which_model == 'wide_resnet':
|
|
netF = feature_arch.WideResnetFeatureExtractor(use_input_norm=True)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
if load_path:
|
|
# Load the model parameters:
|
|
load_net = torch.load(load_path)
|
|
load_net_clean = OrderedDict() # remove unnecessary 'module.'
|
|
for k, v in load_net.items():
|
|
if k.startswith('module.'):
|
|
load_net_clean[k[7:]] = v
|
|
else:
|
|
load_net_clean[k] = v
|
|
netF.load_state_dict(load_net_clean)
|
|
|
|
if not for_training:
|
|
# Put into eval mode, freeze the parameters and set the 'weight' field.
|
|
netF.eval()
|
|
for k, v in netF.named_parameters():
|
|
v.requires_grad = False
|
|
|
|
return netF
|