forked from mrq/ai-voice-cloning
added dropdown to select autoregressive model for TTS, fixed a bug where the settings saveer constantly fires I hate gradio so much why are dropdown.change broken to contiuously fire and send an empty array
This commit is contained in:
parent
a9bd17c353
commit
2615cafd75
0
models/finetunes/.gitkeep
Executable file
0
models/finetunes/.gitkeep
Executable file
57
src/utils.py
57
src/utils.py
|
@ -62,6 +62,7 @@ def setup_args():
|
||||||
'defer-tts-load': False,
|
'defer-tts-load': False,
|
||||||
'device-override': None,
|
'device-override': None,
|
||||||
'whisper-model': "base",
|
'whisper-model': "base",
|
||||||
|
'autoregressive-model': None,
|
||||||
'concurrency-count': 2,
|
'concurrency-count': 2,
|
||||||
'output-sample-rate': 44100,
|
'output-sample-rate': 44100,
|
||||||
'output-volume': 1,
|
'output-volume': 1,
|
||||||
|
@ -87,6 +88,7 @@ def setup_args():
|
||||||
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
|
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
|
||||||
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
|
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
|
||||||
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
|
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
|
||||||
|
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
|
||||||
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
|
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
|
||||||
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
|
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
|
||||||
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
|
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
|
||||||
|
@ -151,10 +153,8 @@ def generate(
|
||||||
global args
|
global args
|
||||||
global tts
|
global tts
|
||||||
|
|
||||||
try:
|
if not tts:
|
||||||
tts
|
raise Exception("TTS is uninitialized or still initializing...")
|
||||||
except NameError:
|
|
||||||
raise Exception("TTS is still initializing...")
|
|
||||||
|
|
||||||
if voice != "microphone":
|
if voice != "microphone":
|
||||||
voices = [voice]
|
voices = [voice]
|
||||||
|
@ -493,7 +493,7 @@ def setup_tortoise(restart=False):
|
||||||
tts = None
|
tts = None
|
||||||
|
|
||||||
print("Initializating TorToiSe...")
|
print("Initializating TorToiSe...")
|
||||||
tts = TextToSpeech(minor_optimizations=not args.low_vram)
|
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model)
|
||||||
get_model_path('dvae.pth')
|
get_model_path('dvae.pth')
|
||||||
print("TorToiSe initialized, ready for generation.")
|
print("TorToiSe initialized, ready for generation.")
|
||||||
return tts
|
return tts
|
||||||
|
@ -720,7 +720,47 @@ def get_voice_list(dir=get_voice_dir()):
|
||||||
os.makedirs(dir, exist_ok=True)
|
os.makedirs(dir, exist_ok=True)
|
||||||
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ]) + ["microphone", "random"]
|
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ]) + ["microphone", "random"]
|
||||||
|
|
||||||
def export_exec_settings( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, device_override, sample_batch_size, concurrency_count, output_sample_rate, output_volume, whisper_model ):
|
def get_autoregressive_models(dir="./models/finetuned/"):
|
||||||
|
os.makedirs(dir, exist_ok=True)
|
||||||
|
return [get_model_path('autoregressive.pth')] + sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ])
|
||||||
|
|
||||||
|
|
||||||
|
def update_autoregressive_model(path_name):
|
||||||
|
|
||||||
|
global tts
|
||||||
|
if not tts:
|
||||||
|
raise Exception("TTS is uninitialized or still initializing...")
|
||||||
|
|
||||||
|
print(f"Loading model: {path_name}")
|
||||||
|
if hasattr(tts, 'load_autoregressive_model') and tts.load_autoregressive_model(path_name):
|
||||||
|
args.autoregressive_model = path_name
|
||||||
|
save_args_settings()
|
||||||
|
# polyfill in case a user did NOT update the packages
|
||||||
|
else:
|
||||||
|
from tortoise.models.autoregressive import UnifiedVoice
|
||||||
|
|
||||||
|
previous_path = tts.autoregressive_model_path
|
||||||
|
tts.autoregressive_model_path = path_name if path_name and os.path.exists(path_name) else get_model_path('autoregressive.pth')
|
||||||
|
|
||||||
|
del tts.autoregressive
|
||||||
|
tts.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
||||||
|
model_dim=1024,
|
||||||
|
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
||||||
|
train_solo_embeddings=False).cpu().eval()
|
||||||
|
tts.autoregressive.load_state_dict(torch.load(tts.autoregressive_model_path))
|
||||||
|
tts.autoregressive.post_init_gpt2_config(kv_cache=tts.use_kv_cache)
|
||||||
|
if tts.preloaded_tensors:
|
||||||
|
tts.autoregressive = tts.autoregressive.to(tts.device)
|
||||||
|
|
||||||
|
if previous_path != tts.autoregressive_model_path:
|
||||||
|
args.autoregressive_model = path_name
|
||||||
|
save_args_settings()
|
||||||
|
|
||||||
|
print(f"Loaded model: {tts.autoregressive_model_path}")
|
||||||
|
|
||||||
|
return path_name
|
||||||
|
|
||||||
|
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, device_override, sample_batch_size, concurrency_count, output_sample_rate, output_volume ):
|
||||||
global args
|
global args
|
||||||
|
|
||||||
args.listen = listen
|
args.listen = listen
|
||||||
|
@ -731,7 +771,6 @@ def export_exec_settings( listen, share, check_for_updates, models_from_local_on
|
||||||
args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents
|
args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents
|
||||||
args.defer_tts_load = defer_tts_load
|
args.defer_tts_load = defer_tts_load
|
||||||
args.device_override = device_override
|
args.device_override = device_override
|
||||||
args.whisper_model = whisper_model
|
|
||||||
args.sample_batch_size = sample_batch_size
|
args.sample_batch_size = sample_batch_size
|
||||||
args.embed_output_metadata = embed_output_metadata
|
args.embed_output_metadata = embed_output_metadata
|
||||||
args.latents_lean_and_mean = latents_lean_and_mean
|
args.latents_lean_and_mean = latents_lean_and_mean
|
||||||
|
@ -741,6 +780,9 @@ def export_exec_settings( listen, share, check_for_updates, models_from_local_on
|
||||||
args.output_sample_rate = output_sample_rate
|
args.output_sample_rate = output_sample_rate
|
||||||
args.output_volume = output_volume
|
args.output_volume = output_volume
|
||||||
|
|
||||||
|
save_args_settings()
|
||||||
|
|
||||||
|
def save_args_settings():
|
||||||
settings = {
|
settings = {
|
||||||
'listen': None if args.listen else args.listen,
|
'listen': None if args.listen else args.listen,
|
||||||
'share': args.share,
|
'share': args.share,
|
||||||
|
@ -751,6 +793,7 @@ def export_exec_settings( listen, share, check_for_updates, models_from_local_on
|
||||||
'defer-tts-load': args.defer_tts_load,
|
'defer-tts-load': args.defer_tts_load,
|
||||||
'device-override': args.device_override,
|
'device-override': args.device_override,
|
||||||
'whisper-model': args.whisper_model,
|
'whisper-model': args.whisper_model,
|
||||||
|
'autoregressive-model': args.autoregressive_model,
|
||||||
'sample-batch-size': args.sample_batch_size,
|
'sample-batch-size': args.sample_batch_size,
|
||||||
'embed-output-metadata': args.embed_output_metadata,
|
'embed-output-metadata': args.embed_output_metadata,
|
||||||
'latents-lean-and-mean': args.latents_lean_and_mean,
|
'latents-lean-and-mean': args.latents_lean_and_mean,
|
||||||
|
|
32
src/webui.py
32
src/webui.py
|
@ -90,10 +90,8 @@ def compute_latents(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm
|
||||||
global tts
|
global tts
|
||||||
global args
|
global args
|
||||||
|
|
||||||
try:
|
if not tts:
|
||||||
tts
|
raise Exception("TTS is uninitialized or still initializing...")
|
||||||
except NameError:
|
|
||||||
raise gr.Error("TTS is still initializing...")
|
|
||||||
|
|
||||||
voice_samples, conditioning_latents = load_voice(voice, load_latents=False)
|
voice_samples, conditioning_latents = load_voice(voice, load_latents=False)
|
||||||
|
|
||||||
|
@ -213,6 +211,14 @@ def update_voices():
|
||||||
def history_copy_settings( voice, file ):
|
def history_copy_settings( voice, file ):
|
||||||
return import_generate_settings( f"./results/{voice}/{file}" )
|
return import_generate_settings( f"./results/{voice}/{file}" )
|
||||||
|
|
||||||
|
def update_model_settings( autoregressive_model, whisper_model ):
|
||||||
|
if args.autoregressive_model != autoregressive_model:
|
||||||
|
update_autoregressive_model(autoregressive_model)
|
||||||
|
|
||||||
|
args.whisper_model = whisper_model
|
||||||
|
|
||||||
|
save_args_settings()
|
||||||
|
|
||||||
def setup_gradio():
|
def setup_gradio():
|
||||||
global args
|
global args
|
||||||
global ui
|
global ui
|
||||||
|
@ -370,13 +376,17 @@ def setup_gradio():
|
||||||
gr.Number(label="Concurrency Count", precision=0, value=args.concurrency_count),
|
gr.Number(label="Concurrency Count", precision=0, value=args.concurrency_count),
|
||||||
gr.Number(label="Ouptut Sample Rate", precision=0, value=args.output_sample_rate),
|
gr.Number(label="Ouptut Sample Rate", precision=0, value=args.output_sample_rate),
|
||||||
gr.Slider(label="Ouptut Volume", minimum=0, maximum=2, value=args.output_volume),
|
gr.Slider(label="Ouptut Volume", minimum=0, maximum=2, value=args.output_volume),
|
||||||
gr.Dropdown(label="Whisper Model", value=args.whisper_model, choices=["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large"]),
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
autoregressive_model_dropdown = gr.Dropdown(get_autoregressive_models(), label="Autoregressive Model", value=args.autoregressive_model)
|
||||||
|
whisper_model_dropdown = gr.Dropdown(["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large"], label="Whisper Model", value=args.whisper_model)
|
||||||
|
save_settings_button = gr.Button(value="Save Settings")
|
||||||
|
|
||||||
gr.Button(value="Check for Updates").click(check_for_updates)
|
gr.Button(value="Check for Updates").click(check_for_updates)
|
||||||
gr.Button(value="Reload TTS").click(reload_tts)
|
gr.Button(value="(Re)Load TTS").click(reload_tts)
|
||||||
|
|
||||||
for i in exec_inputs:
|
for i in exec_inputs:
|
||||||
i.change( fn=export_exec_settings, inputs=exec_inputs )
|
i.change( fn=update_args, inputs=exec_inputs )
|
||||||
|
|
||||||
# console_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
|
# console_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
|
||||||
|
|
||||||
|
@ -533,6 +543,14 @@ def setup_gradio():
|
||||||
outputs=save_yaml_output #console_output
|
outputs=save_yaml_output #console_output
|
||||||
)
|
)
|
||||||
|
|
||||||
|
save_settings_button.click(update_model_settings,
|
||||||
|
inputs=[
|
||||||
|
autoregressive_model_dropdown,
|
||||||
|
whisper_model_dropdown,
|
||||||
|
],
|
||||||
|
outputs=None
|
||||||
|
)
|
||||||
|
|
||||||
if os.path.isfile('./config/generate.json'):
|
if os.path.isfile('./config/generate.json'):
|
||||||
ui.load(import_generate_settings, inputs=None, outputs=input_settings)
|
ui.load(import_generate_settings, inputs=None, outputs=input_settings)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user