tortoise-tts/models/xtransformers.py

1303 lines
43 KiB
Python
Raw Normal View History

2022-04-08 05:18:56 +00:00
import functools
import math
import torch
from torch import nn, einsum
import torch.nn.functional as F
from functools import partial
from inspect import isfunction
from collections import namedtuple
from einops import rearrange, repeat, reduce
from einops.layers.torch import Rearrange
from entmax import entmax15
from torch.utils.checkpoint import checkpoint
from x_transformers.autoregressive_wrapper import AutoregressiveWrapper
DEFAULT_DIM_HEAD = 64
Intermediates = namedtuple('Intermediates', [
'pre_softmax_attn',
'post_softmax_attn'
])
LayerIntermediates = namedtuple('Intermediates', [
'hiddens',
2022-04-08 15:25:21 +00:00
'attn_intermediates',
'past_key_values',
2022-04-08 05:18:56 +00:00
])
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
class always():
def __init__(self, val):
self.val = val
def __call__(self, *args, **kwargs):
return self.val
class not_equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x != self.val
class equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x == self.val
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(t):
return F.normalize(t, p=2, dim=-1)
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(), dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
self.scale = dim ** -0.5
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x):
n = torch.arange(x.shape[1], device=x.device)
pos_emb = self.emb(n)
pos_emb = rearrange(pos_emb, 'n d -> () n d')
return pos_emb * self.scale
class FixedPositionalEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x, seq_dim=1, offset=0):
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
return rearrange(emb, 'n d -> () n d')
class RelativePositionBias(nn.Module):
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
def forward(self, qk_dots):
i, j, device = *qk_dots.shape[-2:], qk_dots.device
q_pos = torch.arange(i, dtype=torch.long, device=device)
k_pos = torch.arange(j, dtype=torch.long, device=device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets,
max_distance=self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> () h i j')
return qk_dots + (bias * self.scale)
class AlibiPositionalBias(nn.Module):
def __init__(self, heads, **kwargs):
super().__init__()
self.heads = heads
slopes = torch.Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, 'h -> () h () ()')
self.register_buffer('slopes', slopes, persistent=False)
self.register_buffer('bias', None, persistent=False)
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2 ** (-2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio ** i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][
:heads - closest_power_of_2]
def forward(self, qk_dots):
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device
if exists(self.bias) and self.bias.shape[-1] >= j:
return qk_dots + self.bias[..., :j]
bias = torch.arange(j, device=device)
bias = rearrange(bias, 'j -> () () () j')
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[1]
bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied))
self.register_buffer('bias', bias, persistent=False)
return qk_dots + self.bias
class LearnedAlibiPositionalBias(AlibiPositionalBias):
def __init__(self, heads, bidirectional=False):
super().__init__(heads)
los_slopes = torch.log(self.slopes)
self.learned_logslopes = nn.Parameter(los_slopes)
self.bidirectional = bidirectional
if self.bidirectional:
self.learned_logslopes_future = nn.Parameter(los_slopes)
def forward(self, qk_dots):
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device
def get_slopes(param):
return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1]))
if exists(self.bias) and self.bias.shape[-1] >= j:
bias = self.bias[..., :i, :j]
else:
i_arange = torch.arange(i, device=device)
j_arange = torch.arange(j, device=device)
bias = rearrange(j_arange, 'j -> 1 1 1 j') - rearrange(i_arange, 'i -> 1 1 i 1')
self.register_buffer('bias', bias, persistent=False)
if self.bidirectional:
past_slopes = get_slopes(self.learned_logslopes)
future_slopes = get_slopes(self.learned_logslopes_future)
bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes)
else:
slopes = get_slopes(self.learned_logslopes)
bias = bias * slopes
return qk_dots + bias
class RotaryEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, max_seq_len, device):
t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return rearrange(emb, 'n d -> () () n d')
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(t, freqs):
seq_len = t.shape[-2]
freqs = freqs[:, :, -seq_len:]
return (t * freqs.cos()) + (rotate_half(t) * freqs.sin())
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
scale_fn = lambda t: t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class Rezero(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
self.g = nn.Parameter(torch.zeros(1))
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
rezero_fn = lambda t: t * self.g
if not isinstance(out, tuple):
return rezero_fn(out)
return (rezero_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(1))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-8):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g
class RMSScaleShiftNorm(nn.Module):
def __init__(self, dim, eps=1e-8):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(dim))
self.scale_shift_process = nn.Linear(dim * 2, dim * 2)
def forward(self, x, norm_scale_shift_inp):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
norm = x / norm.clamp(min=self.eps) * self.g
ss_emb = self.scale_shift_process(norm_scale_shift_inp)
scale, shift = torch.chunk(ss_emb, 2, dim=1)
h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
return h
# residual and residual gates
class Residual(nn.Module):
def __init__(self, dim, scale_residual=False):
super().__init__()
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual=False):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, 'b n d -> (b n) d'),
rearrange(residual, 'b n d -> (b n) d')
)
return gated_output.reshape_as(x)
# token shifting
def shift(t, amount, mask=None):
if amount == 0:
return t
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.)
return F.pad(t, (0, 0, amount, -amount), value=0.)
class ShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get('mask', None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim=-1)
segments_to_shift, rest = splitted[:segments], splitted[segments:]
segments_to_shift = list(map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts)))
x = torch.cat((*segments_to_shift, *rest), dim=-1)
return self.fn(x, **kwargs)
# feedforward
class GLU(nn.Module):
def __init__(self, dim_in, dim_out, activation):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * self.act(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
glu=False,
relu_squared=False,
post_act_ln=False,
dropout=0.,
zero_init_output=False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
activation = ReluSquared() if relu_squared else nn.GELU()
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
activation
) if not glu else GLU(dim, inner_dim, activation)
self.net = nn.Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.net[-1])
def forward(self, x):
return self.net(x)
# attention.
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head=DEFAULT_DIM_HEAD,
heads=8,
causal=False,
talking_heads=False,
head_scale=False,
collab_heads=False,
collab_compression=.3,
sparse_topk=None,
use_entmax15=False,
num_mem_kv=0,
dropout=0.,
on_attn=False,
gate_values=False,
zero_init_output=False,
max_attend_past=None,
qk_norm=False,
scale_init_value=None,
rel_pos_bias=False,
rel_pos_num_buckets=32,
rel_pos_max_distance=128,
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.causal = causal
self.max_attend_past = max_attend_past
qk_dim = v_dim = dim_head * heads
# collaborative heads
self.collab_heads = collab_heads
if self.collab_heads:
qk_dim = int(collab_compression * qk_dim)
self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim))
self.to_q = nn.Linear(dim, qk_dim, bias=False)
self.to_k = nn.Linear(dim, qk_dim, bias=False)
self.to_v = nn.Linear(dim, v_dim, bias=False)
self.dropout = nn.Dropout(dropout)
# add GLU gating for aggregated values, from alphafold2
self.to_v_gate = None
if gate_values:
self.to_v_gate = nn.Linear(dim, v_dim)
nn.init.constant_(self.to_v_gate.weight, 0)
nn.init.constant_(self.to_v_gate.bias, 1)
# cosine sim attention
self.qk_norm = qk_norm
if qk_norm:
scale_init_value = default(scale_init_value,
-3) # if not provided, initialize as though it were sequence length of 1024
self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value)
# talking heads
self.talking_heads = talking_heads
if talking_heads:
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
# head scaling
self.head_scale = head_scale
if head_scale:
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
# explicit topk sparse attention
self.sparse_topk = sparse_topk
# entmax
self.attn_fn = entmax15 if use_entmax15 else F.softmax
# add memory key / values
self.num_mem_kv = num_mem_kv
if num_mem_kv > 0:
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
# attention on attention
self.attn_on_attn = on_attn
self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim)
self.rel_pos_bias = rel_pos_bias
if rel_pos_bias:
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
self.rel_pos = RelativePositionBias(scale=dim_head ** 0.5, causal=causal, heads=heads,
num_buckets=rel_pos_num_buckets, max_distance=rel_pos_max_distance)
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
attn_mask=None,
sinusoidal_emb=None,
rotary_pos_emb=None,
prev_attn=None,
2022-04-08 15:25:21 +00:00
mem=None,
layer_past=None,
2022-04-08 05:18:56 +00:00
):
b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = *x.shape, self.heads, self.talking_heads, self.collab_heads, self.head_scale, self.scale, x.device, exists(
context)
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
if exists(mem):
k_input = torch.cat((mem, k_input), dim=-2)
v_input = torch.cat((mem, v_input), dim=-2)
if exists(sinusoidal_emb):
# in shortformer, the query would start at a position offset depending on the past cached memory
offset = k_input.shape[-2] - q_input.shape[-2]
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
k_input = k_input + sinusoidal_emb(k_input)
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input)
if not collab_heads:
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
else:
q = einsum('b i d, h d -> b h i d', q, self.collab_mixing)
k = rearrange(k, 'b n d -> b () n d')
v = rearrange(v, 'b n (h d) -> b h n d', h=h)
2022-04-08 15:25:21 +00:00
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat([past_key, k], dim=-2)
v = torch.cat([past_value, v], dim=-2)
k_cache = k
v_cache = v
2022-04-08 05:18:56 +00:00
if exists(rotary_pos_emb) and not has_context:
l = rotary_pos_emb.shape[-1]
(ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v))
ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl))
q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr)))
input_mask = None
if any(map(exists, (mask, context_mask))):
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
k_mask = q_mask if not exists(context) else context_mask
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
q_mask = rearrange(q_mask, 'b i -> b () i ()')
k_mask = rearrange(k_mask, 'b j -> b () () j')
input_mask = q_mask * k_mask
if self.num_mem_kv > 0:
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
k = torch.cat((mem_k, k), dim=-2)
v = torch.cat((mem_v, v), dim=-2)
if exists(input_mask):
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
if collab_heads:
k = k.expand(-1, h, -1, -1)
if self.qk_norm:
q, k = map(l2norm, (q, k))
scale = 1 / (self.scale.exp().clamp(min=1e-2))
dots = einsum('b h i d, b h j d -> b h i j', q, k) * scale
mask_value = max_neg_value(dots)
if exists(prev_attn):
dots = dots + prev_attn
pre_softmax_attn = dots.clone()
if talking_heads:
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
if self.rel_pos_bias:
dots = self.rel_pos(dots)
if exists(input_mask):
dots.masked_fill_(~input_mask, mask_value)
del input_mask
if exists(attn_mask):
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
if attn_mask.ndim == 2:
attn_mask = rearrange(attn_mask, 'i j -> () () i j')
elif attn_mask.ndim == 3:
attn_mask = rearrange(attn_mask, 'h i j -> () h i j')
dots.masked_fill_(~attn_mask, mask_value)
if exists(self.max_attend_past):
i, j = dots.shape[-2:]
range_q = torch.arange(j - i, j, device=device)
range_k = torch.arange(j, device=device)
dist = rearrange(range_q, 'i -> () () i ()') - rearrange(range_k, 'j -> () () () j')
mask = dist > self.max_attend_past
dots.masked_fill_(mask, mask_value)
del mask
if self.causal:
i, j = dots.shape[-2:]
r = torch.arange(i, device=device)
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
mask = F.pad(mask, (j - i, 0), value=False)
dots.masked_fill_(mask, mask_value)
del mask
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
top, _ = dots.topk(self.sparse_topk, dim=-1)
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
mask = dots < vk
dots.masked_fill_(mask, mask_value)
del mask
attn = self.attn_fn(dots, dim=-1)
post_softmax_attn = attn.clone()
attn = self.dropout(attn)
if talking_heads:
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
out = einsum('b h i j, b h j d -> b h i d', attn, v)
if head_scale:
out = out * self.head_scale_params
out = rearrange(out, 'b h n d -> b n (h d)')
if exists(self.to_v_gate):
gates = self.to_v_gate(x)
out = out * gates.sigmoid()
intermediates = Intermediates(
pre_softmax_attn=pre_softmax_attn,
post_softmax_attn=post_softmax_attn
)
2022-04-08 15:25:21 +00:00
return self.to_out(out), intermediates, k_cache, v_cache
2022-04-08 05:18:56 +00:00
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads=8,
causal=False,
cross_attend=False,
only_cross=False,
use_scalenorm=False,
use_rms_scaleshift_norm=False,
use_rmsnorm=False,
use_rezero=False,
alibi_pos_bias=False,
alibi_num_heads=None,
alibi_learned=False,
position_infused_attn=False,
rotary_pos_emb=False,
rotary_emb_dim=None,
custom_layers=None,
sandwich_coef=None,
par_ratio=None,
residual_attn=False,
cross_residual_attn=False,
macaron=False,
pre_norm=True,
gate_residual=False,
scale_residual=False,
shift_tokens=0,
sandwich_norm=False,
use_qk_norm_attn=False,
qk_norm_attn_seq_len=None,
zero_init_branch_output=False,
**kwargs
):
super().__init__()
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
self.dim = dim
self.depth = depth
self.layers = nn.ModuleList([])
2022-04-08 15:25:21 +00:00
self.causal = causal
2022-04-08 05:18:56 +00:00
rel_pos_bias = 'rel_pos_bias' in attn_kwargs
self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None
assert not (
alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
if alibi_pos_bias:
alibi_num_heads = default(alibi_num_heads, heads)
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias
self.rel_pos = alibi_pos_klass(heads=alibi_num_heads, bidirectional=not causal)
else:
self.rel_pos = None
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
self.cross_attend = cross_attend
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
norm_class = RMSNorm if use_rmsnorm else norm_class
norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class
norm_fn = partial(norm_class, dim)
norm_fn = nn.Identity if use_rezero else norm_fn
branch_fn = Rezero if use_rezero else None
if cross_attend and not only_cross:
default_block = ('a', 'c', 'f')
elif cross_attend and only_cross:
default_block = ('c', 'f')
else:
default_block = ('a', 'f')
if macaron:
default_block = ('f',) + default_block
# qk normalization
if use_qk_norm_attn:
attn_scale_init_value = -math.log(math.log2(qk_norm_attn_seq_len ** 2 - qk_norm_attn_seq_len)) if exists(
qk_norm_attn_seq_len) else None
attn_kwargs = {**attn_kwargs, 'qk_norm': True, 'scale_init_value': attn_scale_init_value}
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
# calculate layer block order
if exists(custom_layers):
layer_types = custom_layers
elif exists(par_ratio):
par_depth = depth * len(default_block)
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
default_block = tuple(filter(not_equals('f'), default_block))
par_attn = par_depth // par_ratio
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
par_width = (depth_cut + depth_cut // par_attn) // par_attn
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
par_block = default_block + ('f',) * (par_width - len(default_block))
par_head = par_block * par_attn
layer_types = par_head + ('f',) * (par_depth - len(par_head))
elif exists(sandwich_coef):
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
else:
layer_types = default_block * depth
self.layer_types = layer_types
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
# calculate token shifting
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
# iterate and construct layers
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
is_last_layer = ind == (len(self.layer_types) - 1)
if layer_type == 'a':
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
elif layer_type == 'c':
layer = Attention(dim, heads=heads, **attn_kwargs)
elif layer_type == 'f':
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f'invalid layer type {layer_type}')
if layer_shift_tokens > 0:
shift_range_upper = layer_shift_tokens + 1
shift_range_lower = -layer_shift_tokens if not causal else 0
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
if exists(branch_fn):
layer = branch_fn(layer)
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(dim, scale_residual=scale_residual)
layer_uses_qk_norm = use_qk_norm_attn and layer_type in ('a', 'c')
pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None
post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None
post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None
norms = nn.ModuleList([
pre_branch_norm,
post_branch_norm,
post_main_norm
])
self.layers.append(nn.ModuleList([
norms,
layer,
residual
]))
def forward(
self,
x,
context=None,
full_context=None, # for passing a list of hidden states from an encoder
mask=None,
context_mask=None,
attn_mask=None,
mems=None,
return_hiddens=False,
norm_scale_shift_inp=None,
2022-04-08 15:25:21 +00:00
past_key_values=None,
expected_seq_len=None,
2022-04-08 05:18:56 +00:00
):
assert not (self.cross_attend ^ (exists(context) or exists(
full_context))), 'context must be passed in if cross_attend is set to True'
assert context is None or full_context is None, 'only one of full_context or context can be provided'
hiddens = []
intermediates = []
prev_attn = None
prev_cross_attn = None
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
norm_args = {}
if exists(norm_scale_shift_inp):
norm_args['norm_scale_shift_inp'] = norm_scale_shift_inp
rotary_pos_emb = None
if exists(self.rotary_pos_emb):
2022-04-08 15:25:21 +00:00
if not self.training and self.causal:
assert expected_seq_len is not None, "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`"
elif expected_seq_len is None:
expected_seq_len = 0
seq_len = x.shape[1]
if past_key_values is not None:
seq_len += past_key_values[0][0].shape[-2]
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) + [expected_seq_len])
2022-04-08 05:18:56 +00:00
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device)
2022-04-08 15:25:21 +00:00
present_key_values = []
2022-04-08 05:18:56 +00:00
cross_attn_count = 0
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
if layer_type == 'a':
layer_mem = mems.pop(0) if mems else None
residual = x
pre_branch_norm, post_branch_norm, post_main_norm = norm
if exists(pre_branch_norm):
x = pre_branch_norm(x, **norm_args)
2022-04-08 15:25:21 +00:00
if layer_type == 'a' or layer_type == 'c':
if past_key_values is not None:
layer_kv = past_key_values.pop(0)
layer_past = tuple(s.to(x.device) for s in layer_kv)
else:
layer_past = None
2022-04-08 05:18:56 +00:00
if layer_type == 'a':
2022-04-08 15:25:21 +00:00
out, inter, k, v = checkpoint(block, x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb,
prev_attn, layer_mem, layer_past)
2022-04-08 05:18:56 +00:00
elif layer_type == 'c':
if exists(full_context):
2022-04-08 15:25:21 +00:00
out, inter, k, v = checkpoint(block, x, full_context[cross_attn_count], mask, context_mask, None, None,
None, prev_attn, None, layer_past)
2022-04-08 05:18:56 +00:00
else:
2022-04-08 15:25:21 +00:00
out, inter, k, v = checkpoint(block, x, context, mask, context_mask, None, None, None, prev_attn, None, layer_past)
2022-04-08 05:18:56 +00:00
elif layer_type == 'f':
out = checkpoint(block, x)
2022-04-08 15:25:21 +00:00
if layer_type == 'a' or layer_type == 'c' and present_key_values is not None:
present_key_values.append((k.detach(), v.detach()))
2022-04-08 05:18:56 +00:00
if exists(post_branch_norm):
out = post_branch_norm(out, **norm_args)
x = residual_fn(out, residual)
if layer_type in ('a', 'c'):
intermediates.append(inter)
if layer_type == 'a' and self.residual_attn:
prev_attn = inter.pre_softmax_attn
elif layer_type == 'c' and self.cross_residual_attn:
prev_cross_attn = inter.pre_softmax_attn
if exists(post_main_norm):
x = post_main_norm(x, **norm_args)
if layer_type == 'c':
cross_attn_count += 1
if layer_type == 'f':
hiddens.append(x)
if return_hiddens:
intermediates = LayerIntermediates(
hiddens=hiddens,
2022-04-08 15:25:21 +00:00
attn_intermediates=intermediates,
past_key_values=present_key_values
2022-04-08 05:18:56 +00:00
)
return x, intermediates
return x
class Encoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on encoder'
super().__init__(causal=False, **kwargs)
class Decoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on decoder'
super().__init__(causal=True, **kwargs)
class CrossAttender(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend=True, only_cross=True, **kwargs)
class ViTransformerWrapper(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
attn_layers,
num_classes=None,
dropout=0.,
emb_dropout=0.
):
super().__init__()
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
dim = attn_layers.dim
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.attn_layers = attn_layers
self.norm = nn.LayerNorm(dim)
self.mlp_head = FeedForward(dim, dim_out=num_classes, dropout=dropout) if exists(num_classes) else None
def forward(
self,
img,
return_embeddings=False
):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
x = self.patch_to_embedding(x)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.attn_layers(x)
x = self.norm(x)
if not exists(self.mlp_head) or return_embeddings:
return x
return self.mlp_head(x[:, 0])
class TransformerWrapper(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
attn_layers,
emb_dim=None,
max_mem_len=0.,
shift_mem_down=0,
emb_dropout=0.,
num_memory_tokens=None,
tie_embedding=False,
use_pos_emb=True
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
emb_dim = default(emb_dim, dim)
self.max_seq_len = max_seq_len
self.max_mem_len = max_mem_len
self.shift_mem_down = shift_mem_down
self.token_emb = nn.Embedding(num_tokens, emb_dim)
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
self.attn_layers = attn_layers
self.norm = nn.LayerNorm(dim)
self.init_()
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
# memory tokens (like [cls]) from Memory Transformers paper
num_memory_tokens = default(num_memory_tokens, 0)
self.num_memory_tokens = num_memory_tokens
if num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
def init_(self):
nn.init.kaiming_normal_(self.token_emb.weight)
def forward(
self,
x,
return_embeddings=False,
mask=None,
return_hiddens=False,
return_attn=False,
mems=None,
2022-04-08 15:25:21 +00:00
use_cache=False,
2022-04-08 05:18:56 +00:00
**kwargs
):
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
x = self.token_emb(x)
x = x + self.pos_emb(x)
x = self.emb_dropout(x)
x = self.project_emb(x)
if num_mem > 0:
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
x = torch.cat((mem, x), dim=1)
# auto-handle masking after appending memory tokens
if exists(mask):
mask = F.pad(mask, (num_mem, 0), value=True)
if self.shift_mem_down and exists(mems):
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
mems = [*mems_r, *mems_l]
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
x = self.norm(x)
mem, x = x[:, :num_mem], x[:, num_mem:]
out = self.to_logits(x) if not return_embeddings else x
if return_hiddens:
hiddens = intermediates.hiddens
return out, hiddens
2022-04-08 15:25:21 +00:00
res = [out]
2022-04-08 05:18:56 +00:00
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
2022-04-08 15:25:21 +00:00
res.append(attn_maps)
if use_cache:
res.append(intermediates.past_key_values)
2022-04-08 05:18:56 +00:00
2022-04-10 20:41:13 +00:00
if len(res) > 1:
return tuple(res)
return res[0]
2022-04-08 05:18:56 +00:00
class ContinuousTransformerWrapper(nn.Module):
def __init__(
self,
*,
max_seq_len,
attn_layers,
dim_in=None,
dim_out=None,
emb_dim=None,
emb_dropout=0.,
use_pos_emb=True
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
self.max_seq_len = max_seq_len
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) if (
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()
self.attn_layers = attn_layers
self.norm = nn.LayerNorm(dim)
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()
def forward(
self,
x,
return_embeddings=False,
mask=None,
return_attn=False,
mems=None,
2022-04-08 15:25:21 +00:00
use_cache=False,
2022-04-08 05:18:56 +00:00
**kwargs
):
b, n, _, device = *x.shape, x.device
x = self.project_in(x)
x = x + self.pos_emb(x)
x = self.emb_dropout(x)
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
x = self.norm(x)
out = self.project_out(x) if not return_embeddings else x
2022-04-08 15:25:21 +00:00
res = [out]
2022-04-08 05:18:56 +00:00
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
2022-04-08 15:25:21 +00:00
res.append(attn_maps)
if use_cache:
res.append(intermediates.past_key_values)
2022-04-08 05:18:56 +00:00
2022-04-10 20:41:13 +00:00
if len(res) > 1:
return tuple(res)
return res[0]
2022-04-08 05:18:56 +00:00
class XTransformer(nn.Module):
def __init__(
self,
*,
dim,
tie_token_emb=False,
**kwargs
):
super().__init__()
enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)
assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0)
enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)
enc_transformer_kwargs['use_pos_emb'] = enc_kwargs.pop('use_pos_emb', True)
dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0)
dec_transformer_kwargs['use_pos_emb'] = dec_kwargs.pop('use_pos_emb', True)
self.encoder = TransformerWrapper(
**enc_transformer_kwargs,
attn_layers=Encoder(dim=dim, **enc_kwargs)
)
self.decoder = TransformerWrapper(
**dec_transformer_kwargs,
attn_layers=Decoder(dim=dim, cross_attend=True, **dec_kwargs)
)
if tie_token_emb:
self.decoder.token_emb = self.encoder.token_emb
self.decoder = AutoregressiveWrapper(self.decoder)
@torch.no_grad()
def generate(self, seq_in, seq_out_start, seq_len, src_mask=None, src_attn_mask=None, **kwargs):
encodings = self.encoder(seq_in, mask=src_mask, attn_mask=src_attn_mask, return_embeddings=True)
return self.decoder.generate(seq_out_start, seq_len, context=encodings, context_mask=src_mask, **kwargs)
def forward(self, src, tgt, src_mask=None, tgt_mask=None, src_attn_mask=None):
enc = self.encoder(src, mask=src_mask, attn_mask=src_attn_mask, return_embeddings=True)
out = self.decoder(tgt, context=enc, mask=tgt_mask, context_mask=src_mask)
return out