forked from mrq/tortoise-tts
integrate new autoregressive model and fix new diffusion bug
This commit is contained in:
parent
9043dde3f9
commit
33e4bc7907
7
api.py
7
api.py
|
@ -117,13 +117,14 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
|||
cond_mels.append(cond_mel)
|
||||
cond_mels = torch.stack(cond_mels, dim=1)
|
||||
|
||||
output_shape = (mel_codes.shape[0], 100, mel_codes.shape[-1]*4)
|
||||
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, False)
|
||||
output_seq_len = mel_codes.shape[-1]*4*24000//22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
||||
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
||||
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
||||
|
||||
noise = torch.randn(output_shape, device=mel_codes.device) * temperature
|
||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
||||
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
||||
return denormalize_tacotron_mel(mel)[:,:,:mel_codes.shape[-1]*4]
|
||||
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
||||
|
||||
|
||||
class TextToSpeech:
|
||||
|
|
245
api_new_autoregressive.py
Normal file
245
api_new_autoregressive.py
Normal file
|
@ -0,0 +1,245 @@
|
|||
import argparse
|
||||
import os
|
||||
import random
|
||||
from urllib import request
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import progressbar
|
||||
import ocotillo
|
||||
|
||||
from models.diffusion_decoder import DiffusionTts
|
||||
from models.autoregressive import UnifiedVoice
|
||||
from tqdm import tqdm
|
||||
|
||||
from models.arch_util import TorchMelSpectrogram
|
||||
from models.new_autoregressive import AutoregressiveCodegen
|
||||
from models.text_voice_clip import VoiceCLIP
|
||||
from models.vocoder import UnivNetGenerator
|
||||
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
||||
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
||||
|
||||
|
||||
pbar = None
|
||||
def download_models():
|
||||
MODELS = {
|
||||
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin',
|
||||
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin',
|
||||
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin'
|
||||
}
|
||||
os.makedirs('.models', exist_ok=True)
|
||||
def show_progress(block_num, block_size, total_size):
|
||||
global pbar
|
||||
if pbar is None:
|
||||
pbar = progressbar.ProgressBar(maxval=total_size)
|
||||
pbar.start()
|
||||
|
||||
downloaded = block_num * block_size
|
||||
if downloaded < total_size:
|
||||
pbar.update(downloaded)
|
||||
else:
|
||||
pbar.finish()
|
||||
pbar = None
|
||||
for model_name, url in MODELS.items():
|
||||
if os.path.exists(f'.models/{model_name}'):
|
||||
continue
|
||||
print(f'Downloading {model_name} from {url}...')
|
||||
request.urlretrieve(url, f'.models/{model_name}', show_progress)
|
||||
print('Done.')
|
||||
|
||||
|
||||
def pad_or_truncate(t, length):
|
||||
if t.shape[-1] == length:
|
||||
return t
|
||||
elif t.shape[-1] < length:
|
||||
return F.pad(t, (0, length-t.shape[-1]))
|
||||
else:
|
||||
return t[..., :length]
|
||||
|
||||
|
||||
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
||||
"""
|
||||
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
||||
"""
|
||||
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
||||
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
||||
|
||||
|
||||
def load_conditioning(clip, cond_length=132300):
|
||||
gap = clip.shape[-1] - cond_length
|
||||
if gap < 0:
|
||||
clip = F.pad(clip, pad=(0, abs(gap)))
|
||||
elif gap > 0:
|
||||
rand_start = random.randint(0, gap)
|
||||
clip = clip[:, rand_start:rand_start + cond_length]
|
||||
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
|
||||
return mel_clip.unsqueeze(0).cuda()
|
||||
|
||||
|
||||
def fix_autoregressive_output(codes, stop_token):
|
||||
"""
|
||||
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
||||
trained on and what the autoregressive code generator creates (which has no padding or end).
|
||||
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
||||
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
||||
and copying out the last few codes.
|
||||
|
||||
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
||||
"""
|
||||
# Strip off the autoregressive stop token and add padding.
|
||||
stop_token_indices = (codes == stop_token).nonzero()
|
||||
if len(stop_token_indices) == 0:
|
||||
print("No stop tokens found, enjoy that output of yours!")
|
||||
return codes
|
||||
else:
|
||||
codes[stop_token_indices] = 83
|
||||
stm = stop_token_indices.min().item()
|
||||
codes[stm:] = 83
|
||||
if stm - 3 < codes.shape[0]:
|
||||
codes[-3] = 45
|
||||
codes[-2] = 45
|
||||
codes[-1] = 248
|
||||
|
||||
return codes
|
||||
|
||||
|
||||
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_samples, temperature=1):
|
||||
"""
|
||||
Uses the specified diffusion model to convert discrete codes into a spectrogram.
|
||||
"""
|
||||
with torch.no_grad():
|
||||
cond_mels = []
|
||||
for sample in conditioning_samples:
|
||||
sample = pad_or_truncate(sample, 102400)
|
||||
cond_mel = wav_to_univnet_mel(sample.to(mel_codes.device), do_normalization=False)
|
||||
cond_mels.append(cond_mel)
|
||||
cond_mels = torch.stack(cond_mels, dim=1)
|
||||
|
||||
output_seq_len = mel_codes.shape[-1]*4*24000//22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
||||
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
||||
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
||||
|
||||
noise = torch.randn(output_shape, device=mel_codes.device) * temperature
|
||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
||||
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
||||
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
||||
|
||||
|
||||
class TextToSpeech:
|
||||
def __init__(self, autoregressive_batch_size=32):
|
||||
self.autoregressive_batch_size = autoregressive_batch_size
|
||||
self.tokenizer = VoiceBpeTokenizer()
|
||||
download_models()
|
||||
|
||||
self.autoregressive = AutoregressiveCodegen(512, 12).cpu().eval()
|
||||
self.autoregressive.load_state_dict(torch.load('D:\\dlas\\experiments\\train_autoregressive_codegen\\models\\23000_codegen_ema.pth'))
|
||||
|
||||
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||
text_seq_len=350, text_heads=8,
|
||||
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
||||
use_xformers=True).cpu().eval()
|
||||
self.clip.load_state_dict(torch.load('.models/clip.pth'))
|
||||
|
||||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
||||
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
||||
|
||||
self.vocoder = UnivNetGenerator().cpu()
|
||||
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
||||
self.vocoder.eval(inference=True)
|
||||
|
||||
def tts(self, text, voice_samples, k=1,
|
||||
# autoregressive generation parameters follow
|
||||
num_autoregressive_samples=512, temperature=.5, length_penalty=2, repetition_penalty=2.0, top_p=.5,
|
||||
typical_sampling=False, typical_mass=.9,
|
||||
# diffusion generation parameters follow
|
||||
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=.7,):
|
||||
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
||||
text = F.pad(text, (0, 1)) # This may not be necessary.
|
||||
|
||||
conds = []
|
||||
if not isinstance(voice_samples, list):
|
||||
voice_samples = [voice_samples]
|
||||
for vs in voice_samples:
|
||||
conds.append(load_conditioning(vs))
|
||||
conds = torch.stack(conds, dim=1)
|
||||
|
||||
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
||||
|
||||
with torch.no_grad():
|
||||
samples = []
|
||||
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
|
||||
stop_mel_token = self.autoregressive.STOP_TOKEN
|
||||
self.autoregressive = self.autoregressive.cuda()
|
||||
for _ in tqdm(range(num_batches)):
|
||||
codes = self.autoregressive.generate(conds, text,
|
||||
do_sample=True,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
num_return_sequences=self.autoregressive_batch_size,
|
||||
length_penalty=length_penalty,
|
||||
repetition_penalty=repetition_penalty,
|
||||
typical_sampling=typical_sampling,
|
||||
typical_mass=typical_mass)
|
||||
padding_needed = 250 - codes.shape[1]
|
||||
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
||||
samples.append(codes)
|
||||
#self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
clip_results = []
|
||||
self.clip = self.clip.cuda()
|
||||
for batch in samples:
|
||||
for i in range(batch.shape[0]):
|
||||
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||
bad_toks = batch >= 8192
|
||||
batch = batch * bad_toks.logical_not()
|
||||
clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
|
||||
clip_results = torch.cat(clip_results, dim=0)
|
||||
samples = torch.cat(samples, dim=0)
|
||||
best_results = samples[torch.topk(clip_results, k=k).indices]
|
||||
self.clip = self.clip.cpu()
|
||||
del samples
|
||||
|
||||
print("Performing vocoding..")
|
||||
wav_candidates = []
|
||||
self.diffusion = self.diffusion.cuda()
|
||||
self.vocoder = self.vocoder.cuda()
|
||||
for b in range(best_results.shape[0]):
|
||||
code = best_results[b].unsqueeze(0)
|
||||
mel = do_spectrogram_diffusion(self.diffusion, diffuser, code, voice_samples, temperature=diffusion_temperature)
|
||||
wav = self.vocoder.inference(mel)
|
||||
wav_candidates.append(wav.cpu())
|
||||
self.diffusion = self.diffusion.cpu()
|
||||
self.vocoder = self.vocoder.cpu()
|
||||
|
||||
if len(wav_candidates) > 1:
|
||||
return wav_candidates
|
||||
return wav_candidates[0]
|
||||
|
||||
def refine_for_intellibility(self, wav_candidates, corresponding_codes, output_path):
|
||||
"""
|
||||
Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable.
|
||||
TODO: finish this function
|
||||
:param wav_candidates:
|
||||
:return:
|
||||
"""
|
||||
transcriber = ocotillo.Transcriber(on_cuda=True)
|
||||
transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000)
|
||||
best = 99999999
|
||||
for i, transcription in enumerate(transcriptions):
|
||||
dist = lev_distance(transcription, args.text.lower())
|
||||
if dist < best:
|
||||
best = dist
|
||||
best_codes = corresponding_codes[i].unsqueeze(0)
|
||||
best_wav = wav_candidates[i]
|
||||
del transcriber
|
||||
torchaudio.save(os.path.join(output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000)
|
||||
|
||||
# Perform diffusion again with the high-quality diffuser.
|
||||
mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False)
|
||||
wav = vocoder.inference(mel)
|
||||
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000)
|
|
@ -5,7 +5,7 @@ import torch
|
|||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
|
||||
from api import TextToSpeech, load_conditioning
|
||||
from api_new_autoregressive import TextToSpeech, load_conditioning
|
||||
from utils.audio import load_audio
|
||||
from utils.tokenizer import VoiceBpeTokenizer
|
||||
|
||||
|
@ -28,7 +28,7 @@ if __name__ == '__main__':
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=32)
|
||||
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
||||
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
||||
|
|
|
@ -212,7 +212,7 @@ class DiffusionTts(nn.Module):
|
|||
}
|
||||
return groups
|
||||
|
||||
def timestep_independent(self, aligned_conditioning, conditioning_input, return_code_pred):
|
||||
def timestep_independent(self, aligned_conditioning, conditioning_input, expected_seq_len, return_code_pred):
|
||||
# Shuffle aligned_latent to BxCxS format
|
||||
if is_latent(aligned_conditioning):
|
||||
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
||||
|
@ -227,7 +227,7 @@ class DiffusionTts(nn.Module):
|
|||
cond_emb = conds.mean(dim=-1)
|
||||
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
||||
if is_latent(aligned_conditioning):
|
||||
code_emb = self.latent_converter(aligned_conditioning)
|
||||
code_emb = self.autoregressive_latent_converter(aligned_conditioning)
|
||||
else:
|
||||
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
||||
code_emb = self.code_converter(code_emb)
|
||||
|
@ -240,7 +240,7 @@ class DiffusionTts(nn.Module):
|
|||
device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(aligned_conditioning.shape[0], 1, 1),
|
||||
code_emb)
|
||||
expanded_code_emb = F.interpolate(code_emb, size=aligned_conditioning.shape[-1]*4, mode='nearest')
|
||||
expanded_code_emb = F.interpolate(code_emb, size=expected_seq_len, mode='nearest')
|
||||
|
||||
if not return_code_pred:
|
||||
return expanded_code_emb
|
||||
|
@ -250,7 +250,6 @@ class DiffusionTts(nn.Module):
|
|||
mel_pred = mel_pred * unconditioned_batches.logical_not()
|
||||
return expanded_code_emb, mel_pred
|
||||
|
||||
|
||||
def forward(self, x, timesteps, aligned_conditioning=None, conditioning_input=None, precomputed_aligned_embeddings=None, conditioning_free=False, return_code_pred=False):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
@ -275,11 +274,12 @@ class DiffusionTts(nn.Module):
|
|||
if precomputed_aligned_embeddings is not None:
|
||||
code_emb = precomputed_aligned_embeddings
|
||||
else:
|
||||
code_emb, mel_pred = self.timestep_independent(aligned_conditioning, conditioning_input, True)
|
||||
code_emb, mel_pred = self.timestep_independent(aligned_conditioning, conditioning_input, x.shape[-1], True)
|
||||
if is_latent(aligned_conditioning):
|
||||
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
||||
else:
|
||||
unused_params.extend(list(self.latent_converter.parameters()))
|
||||
|
||||
unused_params.append(self.unconditioned_embedding)
|
||||
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
|
293
models/new_autoregressive.py
Normal file
293
models/new_autoregressive.py
Normal file
|
@ -0,0 +1,293 @@
|
|||
import functools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import GPT2PreTrainedModel, GPT2Config
|
||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||
from x_transformers import TransformerWrapper, Encoder, Decoder
|
||||
|
||||
from models.arch_util import AttentionBlock
|
||||
|
||||
|
||||
class InferenceModel(GPT2PreTrainedModel):
|
||||
"""
|
||||
Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with
|
||||
this transformer.
|
||||
"""
|
||||
def __init__(self, model):
|
||||
super().__init__(GPT2Config())
|
||||
self.transformer = model
|
||||
self.context = None
|
||||
|
||||
def parallelize(self, device_map=None):
|
||||
# Not implemented.
|
||||
pass
|
||||
|
||||
def deparallelize(self):
|
||||
# Not implemented.
|
||||
pass
|
||||
|
||||
def get_output_embeddings(self):
|
||||
assert False, "Unsupported operation."
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
assert False, "Unsupported operation."
|
||||
|
||||
def store_context(self, context):
|
||||
self.context = context
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
||||
token_type_ids = kwargs.get("token_type_ids", None)
|
||||
# only last token for inputs_ids if past is defined in kwargs
|
||||
if past:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
position_ids = None
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"position_ids": position_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"token_type_ids": token_type_ids,
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
assert self.context is not None
|
||||
assert inputs_embeds is None # Not supported by this inference model.
|
||||
assert labels is None # Training not supported by this inference model.
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
hidden_states = self.transformer.decoder(input_ids, context=self.context, return_embeddings=True)
|
||||
logits = self.transformer.decoder.transformer.to_logits(hidden_states)
|
||||
|
||||
if not return_dict:
|
||||
return (logits, )
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=None,
|
||||
logits=logits,
|
||||
past_key_values=None,
|
||||
hidden_states=hidden_states,
|
||||
attentions=None,
|
||||
cross_attentions=None,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past, beam_idx):
|
||||
"""
|
||||
This function is used to re-order the :obj:`past_key_values` cache if
|
||||
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
||||
for layer_past in past
|
||||
)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""
|
||||
Basic residual convolutional block that uses GroupNorm.
|
||||
"""
|
||||
def __init__(self, chan):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||
nn.GroupNorm(chan//8, chan),
|
||||
nn.ReLU(),
|
||||
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||
nn.GroupNorm(chan//8, chan)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return F.relu(self.net(x) + x)
|
||||
|
||||
|
||||
class ConditioningEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
spec_dim,
|
||||
embedding_dim,
|
||||
attn_blocks=6,
|
||||
num_attn_heads=4,
|
||||
do_checkpointing=False):
|
||||
super().__init__()
|
||||
attn = []
|
||||
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2),
|
||||
nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2),
|
||||
ResBlock(embedding_dim//2),
|
||||
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
|
||||
for a in range(attn_blocks):
|
||||
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
|
||||
self.attn = nn.Sequential(*attn)
|
||||
self.dim = embedding_dim
|
||||
|
||||
def forward(self, x):
|
||||
h = self.init(x)
|
||||
h = self.attn(h)
|
||||
return h.mean(dim=2)
|
||||
|
||||
|
||||
class CheckpointedLayer(nn.Module):
|
||||
"""
|
||||
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
||||
checkpoint for all other args.
|
||||
"""
|
||||
def __init__(self, wrap):
|
||||
super().__init__()
|
||||
self.wrap = wrap
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
|
||||
partial = functools.partial(self.wrap, **kwargs)
|
||||
return torch.utils.checkpoint.checkpoint(partial, x, *args)
|
||||
|
||||
|
||||
class CheckpointedXTransformerWrapper(nn.Module):
|
||||
"""
|
||||
Wraps a TransformerWrapper and applies CheckpointedLayer to each layer.
|
||||
"""
|
||||
def __init__(self, checkpoint=True, **xtransformer_kwargs):
|
||||
super().__init__()
|
||||
self.transformer = TransformerWrapper(**xtransformer_kwargs)
|
||||
|
||||
if not checkpoint:
|
||||
return
|
||||
for i in range(len(self.transformer.attn_layers.layers)):
|
||||
n, b, r = self.transformer.attn_layers.layers[i]
|
||||
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
return self.transformer(x, **kwargs)
|
||||
|
||||
|
||||
class AutoregressiveCodegen(nn.Module):
|
||||
def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, max_text_tokens=4000,
|
||||
max_mel_tokens=4000, dropout=.1):
|
||||
super().__init__()
|
||||
|
||||
self.START_TOKEN=8192
|
||||
self.STOP_TOKEN=8193
|
||||
self.max_mel_tokens = max_mel_tokens
|
||||
self.minicoder = ConditioningEncoder(80, model_dim, do_checkpointing=False)
|
||||
self.encoder = CheckpointedXTransformerWrapper(
|
||||
num_tokens=num_text_tokens,
|
||||
max_seq_len=max_text_tokens,
|
||||
attn_layers = Encoder(
|
||||
depth=depth//2,
|
||||
heads=model_dim//64,
|
||||
dim=model_dim,
|
||||
attn_dropout=dropout,
|
||||
ff_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
ff_mult=1,
|
||||
rotary_pos_emb=True,
|
||||
rel_pos_bias=True,
|
||||
))
|
||||
self.decoder = CheckpointedXTransformerWrapper(
|
||||
num_tokens=num_mel_tokens,
|
||||
max_seq_len=max_mel_tokens,
|
||||
attn_layers=Decoder(
|
||||
depth=depth,
|
||||
heads=model_dim//64,
|
||||
dim=model_dim,
|
||||
attn_dropout=dropout,
|
||||
ff_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
ff_mult=1,
|
||||
rotary_pos_emb=True,
|
||||
rel_pos_bias=True,
|
||||
cross_attend=True,
|
||||
))
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
return {
|
||||
'encoder': list(self.encoder.parameters()),
|
||||
'decoder': list(self.decoder.parameters()),
|
||||
'minicoder': list(self.minicoder.parameters()),
|
||||
}
|
||||
|
||||
def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True):
|
||||
# Format mel_codes with a stop token on the end.
|
||||
mel_lengths = wav_lengths // 1024 + 1
|
||||
for b in range(mel_codes.shape[0]):
|
||||
mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN
|
||||
mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN)
|
||||
|
||||
# Build the context
|
||||
if len(conditioning_signal.shape) != 4:
|
||||
conditioning_signal = conditioning_signal.unsqueeze(1)
|
||||
cond_embs = []
|
||||
for i in range(conditioning_signal.shape[1]):
|
||||
cond_embs.append(self.minicoder(conditioning_signal[:, i]))
|
||||
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
||||
enc_text = self.encoder(text_codes, return_embeddings=True)
|
||||
context = torch.cat([cond_emb, enc_text], dim=1)
|
||||
|
||||
# Execute the decoder
|
||||
dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1]
|
||||
dec = self.decoder(dec_inputs, context=context)
|
||||
if not return_loss:
|
||||
return dec
|
||||
loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes)
|
||||
return loss_mel
|
||||
|
||||
def generate(self, conditioning_signal, text_codes, **hf_generate_kwargs):
|
||||
if not hasattr(self, 'inference_model'):
|
||||
self.inference_model = InferenceModel(self)
|
||||
|
||||
if len(conditioning_signal.shape) != 4:
|
||||
conditioning_signal = conditioning_signal.unsqueeze(1)
|
||||
cond_embs = []
|
||||
for i in range(conditioning_signal.shape[1]):
|
||||
cond_embs.append(self.minicoder(conditioning_signal[:, i]))
|
||||
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
||||
enc_text = self.encoder(text_codes, return_embeddings=True)
|
||||
context = torch.cat([cond_emb, enc_text], dim=1)
|
||||
self.inference_model.store_context(context)
|
||||
|
||||
gen = self.inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN,
|
||||
max_length=250, output_attentions=False, return_dict_in_generate=True,
|
||||
**hf_generate_kwargs)
|
||||
return gen.sequences
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
codegen = AutoregressiveCodegen(1024, 20)
|
||||
codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200)))
|
||||
codegen(torch.randint(0,256, (2,200)),
|
||||
torch.randn(2,80,120),
|
||||
torch.randint(0,8192, (2,350)),
|
||||
torch.tensor([192,350]))
|
Loading…
Reference in New Issue
Block a user