forked from mrq/tortoise-tts
update api constants
This commit is contained in:
parent
c52cc78632
commit
713281e376
10
api.py
10
api.py
|
@ -186,7 +186,9 @@ class TextToSpeech:
|
||||||
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
||||||
"""
|
"""
|
||||||
# Use generally found best tuning knobs for generation.
|
# Use generally found best tuning knobs for generation.
|
||||||
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .8,
|
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
||||||
|
#'typical_sampling': True,
|
||||||
|
'top_p': .8,
|
||||||
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
||||||
# Presets are defined here.
|
# Presets are defined here.
|
||||||
presets = {
|
presets = {
|
||||||
|
@ -202,7 +204,8 @@ class TextToSpeech:
|
||||||
# autoregressive generation parameters follow
|
# autoregressive generation parameters follow
|
||||||
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
||||||
# diffusion generation parameters follow
|
# diffusion generation parameters follow
|
||||||
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,):
|
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
||||||
|
**hf_generate_kwargs):
|
||||||
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
||||||
text = F.pad(text, (0, 1)) # This may not be necessary.
|
text = F.pad(text, (0, 1)) # This may not be necessary.
|
||||||
|
|
||||||
|
@ -228,7 +231,8 @@ class TextToSpeech:
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
num_return_sequences=self.autoregressive_batch_size,
|
num_return_sequences=self.autoregressive_batch_size,
|
||||||
length_penalty=length_penalty,
|
length_penalty=length_penalty,
|
||||||
repetition_penalty=repetition_penalty)
|
repetition_penalty=repetition_penalty,
|
||||||
|
**hf_generate_kwargs)
|
||||||
padding_needed = self.autoregressive.max_mel_tokens - codes.shape[1]
|
padding_needed = self.autoregressive.max_mel_tokens - codes.shape[1]
|
||||||
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
||||||
samples.append(codes)
|
samples.append(codes)
|
||||||
|
|
|
@ -16,7 +16,7 @@ if __name__ == '__main__':
|
||||||
lines = [l.strip().split('\t') for l in f.readlines()]
|
lines = [l.strip().split('\t') for l in f.readlines()]
|
||||||
|
|
||||||
tts = TextToSpeech()
|
tts = TextToSpeech()
|
||||||
for k in range(4):
|
for k in range(3):
|
||||||
outpath = f'{outpath_base}_{k}'
|
outpath = f'{outpath_base}_{k}'
|
||||||
os.makedirs(outpath, exist_ok=True)
|
os.makedirs(outpath, exist_ok=True)
|
||||||
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
||||||
|
@ -27,9 +27,7 @@ if __name__ == '__main__':
|
||||||
path = os.path.join(os.path.dirname(fname), line[1])
|
path = os.path.join(os.path.dirname(fname), line[1])
|
||||||
cond_audio = load_audio(path, 22050)
|
cond_audio = load_audio(path, 22050)
|
||||||
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
||||||
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=128, k=1,
|
sample = tts.tts_with_preset(transcript, [cond_audio, cond_audio], preset='standard')
|
||||||
repetition_penalty=2.0, length_penalty=2, temperature=.5, top_p=.5,
|
|
||||||
diffusion_temperature=.7, cond_free_k=2, diffusion_iterations=70)
|
|
||||||
|
|
||||||
down = torchaudio.functional.resample(sample, 24000, 22050)
|
down = torchaudio.functional.resample(sample, 24000, 22050)
|
||||||
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
||||||
|
|
0
models/cvvp.py
Normal file
0
models/cvvp.py
Normal file
Loading…
Reference in New Issue
Block a user