forked from mrq/tortoise-tts
Remove CVVP
After training a similar model for a different purpose, I realized that this model is faulty: the contrastive loss it uses only pays attention to high-frequency details which do not contribute meaningfully to output quality. I validated this by comparing a no-CVVP output with a baseline using tts-scores and found no differences.
This commit is contained in:
parent
5d5aacc38c
commit
8139afd0e5
|
@ -10,7 +10,6 @@ import progressbar
|
|||
import torchaudio
|
||||
|
||||
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
|
||||
from tortoise.models.cvvp import CVVP
|
||||
from tortoise.models.diffusion_decoder import DiffusionTts
|
||||
from tortoise.models.autoregressive import UnifiedVoice
|
||||
from tqdm import tqdm
|
||||
|
@ -35,7 +34,6 @@ def download_models(specific_models=None):
|
|||
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth',
|
||||
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth',
|
||||
'clvp2.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth',
|
||||
'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth',
|
||||
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth',
|
||||
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
|
||||
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
|
||||
|
@ -223,10 +221,6 @@ class TextToSpeech:
|
|||
use_xformers=True).cpu().eval()
|
||||
self.clvp.load_state_dict(torch.load(f'{models_dir}/clvp2.pth'))
|
||||
|
||||
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
||||
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
||||
self.cvvp.load_state_dict(torch.load(f'{models_dir}/cvvp.pth'))
|
||||
|
||||
self.vocoder = UnivNetGenerator().cpu()
|
||||
self.vocoder.load_state_dict(torch.load(f'{models_dir}/vocoder.pth')['model_g'])
|
||||
self.vocoder.eval(inference=True)
|
||||
|
@ -309,8 +303,6 @@ class TextToSpeech:
|
|||
return_deterministic_state=False,
|
||||
# autoregressive generation parameters follow
|
||||
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
||||
# CLVP & CVVP parameters
|
||||
clvp_cvvp_slider=.5,
|
||||
# diffusion generation parameters follow
|
||||
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
||||
**hf_generate_kwargs):
|
||||
|
@ -321,10 +313,10 @@ class TextToSpeech:
|
|||
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which
|
||||
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None.
|
||||
Conditioning latents can be retrieved via get_conditioning_latents().
|
||||
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP and CVVP models) clips are returned.
|
||||
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned.
|
||||
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
|
||||
~~AUTOREGRESSIVE KNOBS~~
|
||||
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP+CVVP.
|
||||
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP.
|
||||
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
|
||||
:param temperature: The softmax temperature of the autoregressive model.
|
||||
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
|
||||
|
@ -336,11 +328,6 @@ class TextToSpeech:
|
|||
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
|
||||
could use some tuning.
|
||||
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
|
||||
~~CLVP-CVVP KNOBS~~
|
||||
:param clvp_cvvp_slider: Controls the influence of the CLVP and CVVP models in selecting the best output from the autoregressive model.
|
||||
[0,1]. Values closer to 1 will cause Tortoise to emit clips that follow the text more. Values closer to
|
||||
0 will cause Tortoise to emit clips that more closely follow the reference clip (e.g. the voice sounds more
|
||||
similar).
|
||||
~~DIFFUSION KNOBS~~
|
||||
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
||||
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
||||
|
@ -402,28 +389,19 @@ class TextToSpeech:
|
|||
samples.append(codes)
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
clip_results = []
|
||||
clvp_results = []
|
||||
self.clvp = self.clvp.cuda()
|
||||
self.cvvp = self.cvvp.cuda()
|
||||
if verbose:
|
||||
print("Computing best candidates using CLVP and CVVP")
|
||||
print("Computing best candidates using CLVP")
|
||||
for batch in tqdm(samples, disable=not verbose):
|
||||
for i in range(batch.shape[0]):
|
||||
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||
clvp = self.clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False)
|
||||
if auto_conds is not None:
|
||||
cvvp_accumulator = 0
|
||||
for cl in range(auto_conds.shape[1]):
|
||||
cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
|
||||
cvvp = cvvp_accumulator / auto_conds.shape[1]
|
||||
clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider))
|
||||
else:
|
||||
clip_results.append(clvp)
|
||||
clip_results = torch.cat(clip_results, dim=0)
|
||||
clvp_results.append(clvp)
|
||||
clvp_results = torch.cat(clvp_results, dim=0)
|
||||
samples = torch.cat(samples, dim=0)
|
||||
best_results = samples[torch.topk(clip_results, k=k).indices]
|
||||
best_results = samples[torch.topk(clvp_results, k=k).indices]
|
||||
self.clvp = self.clvp.cpu()
|
||||
self.cvvp = self.cvvp.cpu()
|
||||
del samples
|
||||
|
||||
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
||||
|
|
|
@ -13,9 +13,6 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
||||
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='random')
|
||||
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='fast')
|
||||
parser.add_argument('--voice_diversity_intelligibility_slider', type=float,
|
||||
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility',
|
||||
default=.5)
|
||||
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/')
|
||||
parser.add_argument('--model_dir', type=str, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this'
|
||||
'should only be specified if you have custom checkpoints.', default='.models')
|
||||
|
@ -31,8 +28,7 @@ if __name__ == '__main__':
|
|||
for k, voice in enumerate(selected_voices):
|
||||
voice_samples, conditioning_latents = load_voice(voice)
|
||||
gen, dbg_state = tts.tts_with_preset(args.text, k=args.candidates, voice_samples=voice_samples, conditioning_latents=conditioning_latents,
|
||||
preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider,
|
||||
use_deterministic_seed=args.seed, return_deterministic_state=True)
|
||||
preset=args.preset, use_deterministic_seed=args.seed, return_deterministic_state=True)
|
||||
if isinstance(gen, list):
|
||||
for j, g in enumerate(gen):
|
||||
torchaudio.save(os.path.join(args.output_path, f'{voice}_{k}_{j}.wav'), g.squeeze(0).cpu(), 24000)
|
||||
|
|
|
@ -1,133 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import einsum
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from tortoise.models.arch_util import AttentionBlock
|
||||
from tortoise.models.xtransformers import ContinuousTransformerWrapper, Encoder
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def masked_mean(t, mask):
|
||||
t = t.masked_fill(~mask, 0.)
|
||||
return t.sum(dim = 1) / mask.sum(dim = 1)
|
||||
|
||||
|
||||
class CollapsingTransformer(nn.Module):
|
||||
def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
|
||||
super().__init__()
|
||||
self.transformer = ContinuousTransformerWrapper(
|
||||
max_seq_len=-1,
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=model_dim,
|
||||
depth=depth,
|
||||
heads=heads,
|
||||
ff_dropout=dropout,
|
||||
ff_mult=1,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
**encoder_kwargs,
|
||||
))
|
||||
self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
|
||||
AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
|
||||
nn.Conv1d(output_dims, output_dims, 1))
|
||||
self.mask_percentage = mask_percentage
|
||||
|
||||
def forward(self, x, **transformer_kwargs):
|
||||
h = self.transformer(x, **transformer_kwargs)
|
||||
h = h.permute(0,2,1)
|
||||
h = checkpoint(self.pre_combiner, h).permute(0,2,1)
|
||||
if self.training:
|
||||
mask = torch.rand_like(h.float()) > self.mask_percentage
|
||||
else:
|
||||
mask = torch.ones_like(h.float()).bool()
|
||||
return masked_mean(h, mask)
|
||||
|
||||
|
||||
class ConvFormatEmbedding(nn.Module):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.emb(x)
|
||||
return y.permute(0,2,1)
|
||||
|
||||
|
||||
class CVVP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_dim=512,
|
||||
transformer_heads=8,
|
||||
dropout=.1,
|
||||
conditioning_enc_depth=8,
|
||||
cond_mask_percentage=0,
|
||||
mel_channels=80,
|
||||
mel_codes=None,
|
||||
speech_enc_depth=8,
|
||||
speech_mask_percentage=0,
|
||||
latent_multiplier=1,
|
||||
):
|
||||
super().__init__()
|
||||
latent_dim = latent_multiplier*model_dim
|
||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||
|
||||
self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
|
||||
nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
|
||||
self.conditioning_transformer = CollapsingTransformer(model_dim, model_dim, transformer_heads, dropout, conditioning_enc_depth, cond_mask_percentage)
|
||||
self.to_conditioning_latent = nn.Linear(latent_dim, latent_dim, bias=False)
|
||||
|
||||
if mel_codes is None:
|
||||
self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
|
||||
else:
|
||||
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
|
||||
self.speech_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
|
||||
self.to_speech_latent = nn.Linear(latent_dim, latent_dim, bias=False)
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
return {
|
||||
'conditioning': list(self.conditioning_transformer.parameters()),
|
||||
'speech': list(self.speech_transformer.parameters()),
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
mel_cond,
|
||||
mel_input,
|
||||
return_loss=False
|
||||
):
|
||||
cond_emb = self.cond_emb(mel_cond).permute(0,2,1)
|
||||
enc_cond = self.conditioning_transformer(cond_emb)
|
||||
cond_latents = self.to_conditioning_latent(enc_cond)
|
||||
|
||||
speech_emb = self.speech_emb(mel_input).permute(0,2,1)
|
||||
enc_speech = self.speech_transformer(speech_emb)
|
||||
speech_latents = self.to_speech_latent(enc_speech)
|
||||
|
||||
|
||||
cond_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents))
|
||||
temp = self.temperature.exp()
|
||||
|
||||
if not return_loss:
|
||||
sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp
|
||||
return sim
|
||||
|
||||
sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp
|
||||
labels = torch.arange(cond_latents.shape[0], device=mel_input.device)
|
||||
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clvp = CVVP()
|
||||
clvp(torch.randn(2,80,100),
|
||||
torch.randn(2,80,95),
|
||||
return_loss=True)
|
|
@ -18,9 +18,6 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
||||
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard')
|
||||
parser.add_argument('--regenerate', type=str, help='Comma-separated list of clip numbers to re-generate, or nothing.', default=None)
|
||||
parser.add_argument('--voice_diversity_intelligibility_slider', type=float,
|
||||
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility',
|
||||
default=.5)
|
||||
parser.add_argument('--model_dir', type=str, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this'
|
||||
'should only be specified if you have custom checkpoints.', default='.models')
|
||||
parser.add_argument('--seed', type=int, help='Random seed which can be used to reproduce results.', default=None)
|
||||
|
@ -62,8 +59,7 @@ if __name__ == '__main__':
|
|||
all_parts.append(load_audio(os.path.join(voice_outpath, f'{j}.wav'), 24000))
|
||||
continue
|
||||
gen = tts.tts_with_preset(text, voice_samples=voice_samples, conditioning_latents=conditioning_latents,
|
||||
preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider,
|
||||
use_deterministic_seed=seed)
|
||||
preset=args.preset, use_deterministic_seed=seed)
|
||||
gen = gen.squeeze(0).cpu()
|
||||
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen, 24000)
|
||||
all_parts.append(gen)
|
||||
|
|
Loading…
Reference in New Issue
Block a user