forked from mrq/tortoise-tts
Support CVVP & fix for major bug in API
This commit is contained in:
parent
39ab8a9adf
commit
8e94abd341
32
api.py
32
api.py
|
@ -7,12 +7,13 @@ import torch
|
|||
import torch.nn.functional as F
|
||||
import progressbar
|
||||
|
||||
from models.cvvp import CVVP
|
||||
from models.diffusion_decoder import DiffusionTts
|
||||
from models.autoregressive import UnifiedVoice
|
||||
from tqdm import tqdm
|
||||
|
||||
from models.arch_util import TorchMelSpectrogram
|
||||
from models.text_voice_clip import VoiceCLIP
|
||||
from models.clvp import CLVP
|
||||
from models.vocoder import UnivNetGenerator
|
||||
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
||||
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||
|
@ -175,11 +176,15 @@ class TextToSpeech:
|
|||
average_conditioning_embeddings=True).cpu().eval()
|
||||
self.autoregressive_for_diffusion.load_state_dict(torch.load('.models/autoregressive.pth'))
|
||||
|
||||
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||
text_seq_len=350, text_heads=8,
|
||||
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
||||
use_xformers=True).cpu().eval()
|
||||
self.clip.load_state_dict(torch.load('.models/clip.pth'))
|
||||
self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||
text_seq_len=350, text_heads=8,
|
||||
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
||||
use_xformers=True).cpu().eval()
|
||||
self.clvp.load_state_dict(torch.load('.models/clip.pth'))
|
||||
|
||||
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
||||
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
||||
self.cvvp.load_state_dict(torch.load('.models/cvvp.pth'))
|
||||
|
||||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
|
@ -216,6 +221,8 @@ class TextToSpeech:
|
|||
def tts(self, text, voice_samples, k=1,
|
||||
# autoregressive generation parameters follow
|
||||
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
||||
# CLVP & CVVP parameters
|
||||
clvp_cvvp_slider=.5,
|
||||
# diffusion generation parameters follow
|
||||
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
||||
**hf_generate_kwargs):
|
||||
|
@ -253,15 +260,22 @@ class TextToSpeech:
|
|||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
clip_results = []
|
||||
self.clip = self.clip.cuda()
|
||||
self.clvp = self.clvp.cuda()
|
||||
self.cvvp = self.cvvp.cuda()
|
||||
for batch in samples:
|
||||
for i in range(batch.shape[0]):
|
||||
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||
clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
|
||||
clvp = self.clvp(text.repeat(batch.shape[0], 1), batch, return_loss=False)
|
||||
cvvp_accumulator = 0
|
||||
for cl in range(conds.shape[1]):
|
||||
cvvp_accumulator = cvvp_accumulator + self.cvvp(conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False )
|
||||
cvvp = cvvp_accumulator / conds.shape[1]
|
||||
clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider))
|
||||
clip_results = torch.cat(clip_results, dim=0)
|
||||
samples = torch.cat(samples, dim=0)
|
||||
best_results = samples[torch.topk(clip_results, k=k).indices]
|
||||
self.clip = self.clip.cpu()
|
||||
self.clvp = self.clvp.cpu()
|
||||
self.cvvp = self.cvvp.cpu()
|
||||
del samples
|
||||
|
||||
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
||||
|
|
|
@ -562,7 +562,8 @@ class UnifiedVoice(nn.Module):
|
|||
logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
|
||||
max_length = trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length
|
||||
gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
||||
max_length=max_length, logits_processor=logits_processor, **hf_generate_kwargs)
|
||||
max_length=max_length, logits_processor=logits_processor,
|
||||
num_return_sequences=num_return_sequences, **hf_generate_kwargs)
|
||||
return gen[:, trunc_index:]
|
||||
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ def masked_mean(t, mask, dim = 1):
|
|||
t = t.masked_fill(~mask[:, :, None], 0.)
|
||||
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
|
||||
|
||||
class VoiceCLIP(nn.Module):
|
||||
class CLVP(nn.Module):
|
||||
"""
|
||||
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
|
||||
transcribed text.
|
||||
|
@ -141,7 +141,7 @@ class VoiceCLIP(nn.Module):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2)
|
||||
clip = CLVP(text_mask_percentage=.2, voice_mask_percentage=.2)
|
||||
clip(torch.randint(0,256,(2,120)),
|
||||
torch.tensor([50,100]),
|
||||
torch.randint(0,8192,(2,250)),
|
133
models/cvvp.py
133
models/cvvp.py
|
@ -0,0 +1,133 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import einsum
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from models.arch_util import AttentionBlock
|
||||
from models.xtransformers import ContinuousTransformerWrapper, Encoder
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def masked_mean(t, mask):
|
||||
t = t.masked_fill(~mask, 0.)
|
||||
return t.sum(dim = 1) / mask.sum(dim = 1)
|
||||
|
||||
|
||||
class CollapsingTransformer(nn.Module):
|
||||
def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
|
||||
super().__init__()
|
||||
self.transformer = ContinuousTransformerWrapper(
|
||||
max_seq_len=-1,
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=model_dim,
|
||||
depth=depth,
|
||||
heads=heads,
|
||||
ff_dropout=dropout,
|
||||
ff_mult=1,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
**encoder_kwargs,
|
||||
))
|
||||
self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
|
||||
AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
|
||||
nn.Conv1d(output_dims, output_dims, 1))
|
||||
self.mask_percentage = mask_percentage
|
||||
|
||||
def forward(self, x, **transformer_kwargs):
|
||||
h = self.transformer(x, **transformer_kwargs)
|
||||
h = h.permute(0,2,1)
|
||||
h = checkpoint(self.pre_combiner, h).permute(0,2,1)
|
||||
if self.training:
|
||||
mask = torch.rand_like(h.float()) > self.mask_percentage
|
||||
else:
|
||||
mask = torch.ones_like(h.float()).bool()
|
||||
return masked_mean(h, mask)
|
||||
|
||||
|
||||
class ConvFormatEmbedding(nn.Module):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.emb(x)
|
||||
return y.permute(0,2,1)
|
||||
|
||||
|
||||
class CVVP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_dim=512,
|
||||
transformer_heads=8,
|
||||
dropout=.1,
|
||||
conditioning_enc_depth=8,
|
||||
cond_mask_percentage=0,
|
||||
mel_channels=80,
|
||||
mel_codes=None,
|
||||
speech_enc_depth=8,
|
||||
speech_mask_percentage=0,
|
||||
latent_multiplier=1,
|
||||
):
|
||||
super().__init__()
|
||||
latent_dim = latent_multiplier*model_dim
|
||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||
|
||||
self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
|
||||
nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
|
||||
self.conditioning_transformer = CollapsingTransformer(model_dim, model_dim, transformer_heads, dropout, conditioning_enc_depth, cond_mask_percentage)
|
||||
self.to_conditioning_latent = nn.Linear(latent_dim, latent_dim, bias=False)
|
||||
|
||||
if mel_codes is None:
|
||||
self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
|
||||
else:
|
||||
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
|
||||
self.speech_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
|
||||
self.to_speech_latent = nn.Linear(latent_dim, latent_dim, bias=False)
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
return {
|
||||
'conditioning': list(self.conditioning_transformer.parameters()),
|
||||
'speech': list(self.speech_transformer.parameters()),
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
mel_cond,
|
||||
mel_input,
|
||||
return_loss=False
|
||||
):
|
||||
cond_emb = self.cond_emb(mel_cond).permute(0,2,1)
|
||||
enc_cond = self.conditioning_transformer(cond_emb)
|
||||
cond_latents = self.to_conditioning_latent(enc_cond)
|
||||
|
||||
speech_emb = self.speech_emb(mel_input).permute(0,2,1)
|
||||
enc_speech = self.speech_transformer(speech_emb)
|
||||
speech_latents = self.to_speech_latent(enc_speech)
|
||||
|
||||
|
||||
cond_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents))
|
||||
temp = self.temperature.exp()
|
||||
|
||||
if not return_loss:
|
||||
sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp
|
||||
return sim
|
||||
|
||||
sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp
|
||||
labels = torch.arange(cond_latents.shape[0], device=mel_input.device)
|
||||
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clvp = CVVP()
|
||||
clvp(torch.randn(2,80,100),
|
||||
torch.randn(2,80,95),
|
||||
return_loss=True)
|
2
read.py
2
read.py
|
@ -28,7 +28,7 @@ def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
|
||||
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood2.txt")
|
||||
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
||||
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
|
||||
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
||||
|
|
Loading…
Reference in New Issue
Block a user