update to v2 models (clvp pending)

This commit is contained in:
James Betker 2022-04-18 17:32:54 -06:00
parent a578697287
commit ad0f3fdd58

31
api.py
View File

@ -23,9 +23,11 @@ from utils.tokenizer import VoiceBpeTokenizer, lev_distance
pbar = None pbar = None
def download_models(): def download_models():
MODELS = { MODELS = {
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin', 'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth',
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin', 'clvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clip.pth',
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin' 'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth',
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth',
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
} }
os.makedirs('.models', exist_ok=True) os.makedirs('.models', exist_ok=True)
def show_progress(block_num, block_size, total_size): def show_progress(block_num, block_size, total_size):
@ -162,25 +164,12 @@ class TextToSpeech:
train_solo_embeddings=False, train_solo_embeddings=False,
average_conditioning_embeddings=True).cpu().eval() average_conditioning_embeddings=True).cpu().eval()
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth')) self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
'''
self.autoregressive = UnifiedVoice(max_mel_tokens=2048, max_text_tokens=1024, max_conditioning_inputs=1, layers=42,
model_dim=1152, heads=18, number_text_tokens=256, train_solo_embeddings=False,
average_conditioning_embeddings=True, types=2).cpu().eval()
self.autoregressive.load_state_dict(torch.load('X:\\dlas\\experiments\\train_gpt_tts_xl\\models\\15250_gpt_ema.pth'))
'''
self.autoregressive_for_diffusion = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False,
average_conditioning_embeddings=True).cpu().eval()
self.autoregressive_for_diffusion.load_state_dict(torch.load('.models/autoregressive.pth'))
self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
text_seq_len=350, text_heads=8, text_seq_len=350, text_heads=8,
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
use_xformers=True).cpu().eval() use_xformers=True).cpu().eval()
self.clvp.load_state_dict(torch.load('.models/clip.pth')) self.clvp.load_state_dict(torch.load('.models/clvp.pth'))
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0, self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval() speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
@ -281,11 +270,11 @@ class TextToSpeech:
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
# results, but will increase memory usage. # results, but will increase memory usage.
self.autoregressive_for_diffusion = self.autoregressive_for_diffusion.cuda() self.autoregressive = self.autoregressive.cuda()
best_latents = self.autoregressive_for_diffusion(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results, best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
torch.tensor([best_results.shape[-1]*self.autoregressive_for_diffusion.mel_length_compression], device=conds.device), torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
return_latent=True, clip_inputs=False) return_latent=True, clip_inputs=False)
self.autoregressive_for_diffusion = self.autoregressive_for_diffusion.cpu() self.autoregressive = self.autoregressive.cpu()
print("Performing vocoding..") print("Performing vocoding..")
wav_candidates = [] wav_candidates = []