forked from mrq/tortoise-tts
Add sweeper script for finding optimal generation hyperparameters.
This commit is contained in:
parent
f625a9e443
commit
cdc26b5e23
61
sweep.py
Normal file
61
sweep.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
import os
|
||||
from random import shuffle
|
||||
|
||||
import torchaudio
|
||||
|
||||
from api import TextToSpeech
|
||||
from utils.audio import load_audio
|
||||
|
||||
|
||||
def permutations(args):
|
||||
res = []
|
||||
k = next(iter(args.keys()))
|
||||
vals = args[k]
|
||||
del args[k]
|
||||
if not args:
|
||||
return [{k: v} for v in vals]
|
||||
lower = permutations(args)
|
||||
for v in vals:
|
||||
for l in lower:
|
||||
lc = l.copy()
|
||||
lc[k] = v
|
||||
res.append(lc)
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
||||
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\std_sweep_diffusion'
|
||||
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
||||
|
||||
arg_ranges = {
|
||||
'diffusion_temperature': [.5, .7, 1],
|
||||
'cond_free_k': [.5, 1, 2],
|
||||
}
|
||||
cfgs = permutations(arg_ranges)
|
||||
shuffle(cfgs)
|
||||
|
||||
for cfg in cfgs:
|
||||
outpath = os.path.join(outpath_base, f'{cfg["cond_free_k"]}_{cfg["diffusion_temperature"]}')
|
||||
os.makedirs(outpath, exist_ok=True)
|
||||
os.makedirs(outpath_real, exist_ok=True)
|
||||
with open(fname, 'r', encoding='utf-8') as f:
|
||||
lines = [l.strip().split('\t') for l in f.readlines()]
|
||||
|
||||
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
||||
tts = TextToSpeech()
|
||||
for e, line in enumerate(lines):
|
||||
transcript = line[0]
|
||||
if len(transcript) > 120:
|
||||
continue # We need to support this, but cannot yet.
|
||||
path = os.path.join(os.path.dirname(fname), line[1])
|
||||
cond_audio = load_audio(path, 22050)
|
||||
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
||||
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=256, k=1, diffusion_iterations=200, cond_free=False,
|
||||
repetition_penalty=1.5, length_penalty=2, temperature=.9, top_p=.9)
|
||||
down = torchaudio.functional.resample(sample, 24000, 22050)
|
||||
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
||||
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
||||
recorder.write(f'{transcript}\t{fout_path}\n')
|
||||
recorder.flush()
|
||||
recorder.close()
|
Loading…
Reference in New Issue
Block a user