forked from mrq/tortoise-tts
Use librosa for loading mp3s
This commit is contained in:
parent
2ca4ea9948
commit
ee6f9b15ce
|
@ -1,6 +1,7 @@
|
||||||
import os
|
import os
|
||||||
from glob import glob
|
from glob import glob
|
||||||
|
|
||||||
|
import librosa
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -26,9 +27,7 @@ def load_audio(audiopath, sampling_rate):
|
||||||
if audiopath[-4:] == '.wav':
|
if audiopath[-4:] == '.wav':
|
||||||
audio, lsr = load_wav_to_torch(audiopath)
|
audio, lsr = load_wav_to_torch(audiopath)
|
||||||
elif audiopath[-4:] == '.mp3':
|
elif audiopath[-4:] == '.mp3':
|
||||||
# https://github.com/neonbjb/pyfastmp3decoder - Definitely worth it.
|
audio, lsr = librosa.load(audiopath, sr=sampling_rate)
|
||||||
from pyfastmp3decoder.mp3decoder import load_mp3
|
|
||||||
audio, lsr = load_mp3(audiopath, sampling_rate)
|
|
||||||
audio = torch.FloatTensor(audio)
|
audio = torch.FloatTensor(audio)
|
||||||
|
|
||||||
# Remove any channel data.
|
# Remove any channel data.
|
||||||
|
|
Loading…
Reference in New Issue
Block a user