tortoise-tts/app.py
2023-02-09 20:42:38 +00:00

595 lines
24 KiB
Python
Executable File

import os
import argparse
import time
import json
import base64
import re
import urllib.request
import torch
import torchaudio
import music_tag
import gradio as gr
import gradio.utils
from datetime import datetime
from fastapi import FastAPI
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
from tortoise.utils.text import split_and_recombine_text
def generate(text, delimiter, emotion, prompt, voice, mic_audio, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, diffusion_sampler, breathing_room, cvvp_weight, experimentals, progress=gr.Progress(track_tqdm=True)):
if voice != "microphone":
voices = [voice]
else:
voices = []
if voice == "microphone":
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
mic = load_audio(mic_audio, tts.input_sample_rate)
voice_samples, conditioning_latents = [mic], None
else:
progress(0, desc="Loading voice...")
voice_samples, conditioning_latents = load_voice(voice)
if voice_samples is not None:
sample_voice = voice_samples[0]
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, progress=progress, max_chunk_size=args.cond_latent_max_chunk_size)
if len(conditioning_latents) == 4:
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
if voice != "microphone":
torch.save(conditioning_latents, f'./tortoise/voices/{voice}/cond_latents.pth')
voice_samples = None
else:
sample_voice = None
if seed == 0:
seed = None
if conditioning_latents is not None and len(conditioning_latents) == 2 and cvvp_weight > 0:
print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents.")
cvvp_weight = 0
start_time = time.time()
settings = {
'temperature': temperature, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
'top_p': .8,
'cond_free_k': 2.0, 'diffusion_temperature': 1.0,
'num_autoregressive_samples': num_autoregressive_samples,
'sample_batch_size': args.sample_batch_size,
'diffusion_iterations': diffusion_iterations,
'voice_samples': voice_samples,
'conditioning_latents': conditioning_latents,
'use_deterministic_seed': seed,
'return_deterministic_state': True,
'k': candidates,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'progress': progress,
'half_p': "Half Precision" in experimentals,
'cond_free': "Conditioning-Free" in experimentals,
'cvvp_amount': cvvp_weight,
}
if delimiter == "\\n":
delimiter = "\n"
if delimiter != "" and delimiter in text:
texts = text.split(delimiter)
else:
texts = split_and_recombine_text(text)
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
audio_cache = {}
for line, cut_text in enumerate(texts):
if emotion == "Custom":
if prompt.strip() != "":
cut_text = f"[{prompt},] {cut_text}"
else:
cut_text = f"[I am really {emotion.lower()},] {cut_text}"
print(f"[{str(line+1)}/{str(len(texts))}] Generating line: {cut_text}")
gen, additionals = tts.tts(cut_text, **settings )
seed = additionals[0]
if isinstance(gen, list):
for j, g in enumerate(gen):
audio = g.squeeze(0).cpu()
audio_cache[f"candidate_{j}/result_{line}.wav"] = {
'audio': audio,
'text': cut_text,
}
os.makedirs(f'{outdir}/candidate_{j}', exist_ok=True)
torchaudio.save(f'{outdir}/candidate_{j}/result_{line}.wav', audio, tts.output_sample_rate)
else:
audio = gen.squeeze(0).cpu()
audio_cache[f"result_{line}.wav"] = {
'audio': audio,
'text': cut_text,
}
torchaudio.save(f'{outdir}/result_{line}.wav', audio, tts.output_sample_rate)
output_voice = None
if len(texts) > 1:
for candidate in range(candidates):
audio_clips = []
for line in range(len(texts)):
if isinstance(gen, list):
audio = audio_cache[f'candidate_{candidate}/result_{line}.wav']['audio']
else:
audio = audio_cache[f'result_{line}.wav']['audio']
audio_clips.append(audio)
audio = torch.cat(audio_clips, dim=-1)
torchaudio.save(f'{outdir}/combined_{candidate}.wav', audio, tts.output_sample_rate)
audio = audio.squeeze(0).cpu()
audio_cache[f'combined_{candidate}.wav'] = {
'audio': audio,
'text': cut_text,
}
if output_voice is None:
output_voice = audio
else:
if isinstance(gen, list):
output_voice = gen[0]
else:
output_voice = gen
if output_voice is not None:
output_voice = (tts.output_sample_rate, output_voice.numpy())
info = {
'text': text,
'delimiter': '\\n' if delimiter == "\n" else delimiter,
'emotion': emotion,
'prompt': prompt,
'voice': voice,
'mic_audio': mic_audio,
'seed': seed,
'candidates': candidates,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'temperature': temperature,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'cvvp_weight': cvvp_weight,
'experimentals': experimentals,
'time': time.time()-start_time,
}
with open(f'{outdir}/input.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
if voice is not None and conditioning_latents is not None:
with open(f'./tortoise/voices/{voice}/cond_latents.pth', 'rb') as f:
info['latents'] = base64.b64encode(f.read()).decode("ascii")
if args.embed_output_metadata:
for path in audio_cache:
info['text'] = audio_cache[path]['text']
metadata = music_tag.load_file(f"{outdir}/{path}")
metadata['lyrics'] = json.dumps(info)
metadata.save()
if sample_voice is not None:
sample_voice = (tts.input_sample_rate, sample_voice.squeeze().cpu().numpy())
print(f"Generation took {info['time']} seconds, saved to '{outdir}'\n")
info['seed'] = settings['use_deterministic_seed']
del info['latents']
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
return (
sample_voice,
output_voice,
seed
)
def update_presets(value):
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
if value in PRESETS:
preset = PRESETS[value]
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
else:
return (gr.update(), gr.update())
def read_generate_settings(file, save_latents=True):
j = None
latents = None
if file is not None:
if hasattr(file, 'name'):
metadata = music_tag.load_file(file.name)
if 'lyrics' in metadata:
j = json.loads(str(metadata['lyrics']))
elif file[-5:] == ".json":
with open(file, 'r') as f:
j = json.load(f)
if 'latents' in j and save_latents:
latents = base64.b64decode(j['latents'])
del j['latents']
if latents and save_latents:
outdir='./voices/.temp/'
os.makedirs(outdir, exist_ok=True)
with open(f'{outdir}/cond_latents.pth', 'wb') as f:
f.write(latents)
latents = f'{outdir}/cond_latents.pth'
return (
j,
latents
)
def import_generate_settings(file="./config/generate.json"):
settings, _ = read_generate_settings(file, save_latents=False)
if settings is None:
return None
return (
None if 'text' not in settings else settings['text'],
None if 'delimiter' not in settings else settings['delimiter'],
None if 'emotion' not in settings else settings['emotion'],
None if 'prompt' not in settings else settings['prompt'],
None if 'voice' not in settings else settings['voice'],
None if 'mic_audio' not in settings else settings['mic_audio'],
None if 'seed' not in settings else settings['seed'],
None if 'candidates' not in settings else settings['candidates'],
None if 'num_autoregressive_samples' not in settings else settings['num_autoregressive_samples'],
None if 'diffusion_iterations' not in settings else settings['diffusion_iterations'],
None if 'temperature' not in settings else settings['temperature'],
None if 'diffusion_sampler' not in settings else settings['diffusion_sampler'],
None if 'breathing_room' not in settings else settings['breathing_room'],
None if 'cvvp_weight' not in settings else settings['cvvp_weight'],
None if 'experimentals' not in settings else settings['experimentals'],
)
def curl(url):
try:
req = urllib.request.Request(url, headers={'User-Agent': 'Python'})
conn = urllib.request.urlopen(req)
data = conn.read()
data = data.decode()
data = json.loads(data)
conn.close()
return data
except Exception as e:
print(e)
return None
def check_for_updates():
if not os.path.isfile('./.git/FETCH_HEAD'):
print("Cannot check for updates: not from a git repo")
return False
with open(f'./.git/FETCH_HEAD', 'r', encoding="utf-8") as f:
head = f.read()
match = re.findall(r"^([a-f0-9]+).+?https:\/\/(.+?)\/(.+?)\/(.+?)\n", head)
if match is None or len(match) == 0:
print("Cannot check for updates: cannot parse FETCH_HEAD")
return False
match = match[0]
local = match[0]
host = match[1]
owner = match[2]
repo = match[3]
res = curl(f"https://{host}/api/v1/repos/{owner}/{repo}/branches/") #this only works for gitea instances
if res is None or len(res) == 0:
print("Cannot check for updates: cannot fetch from remote")
return False
remote = res[0]["commit"]["id"]
if remote != local:
print(f"New version found: {local[:8]} => {remote[:8]}")
return True
return False
def update_voices():
return gr.Dropdown.update(choices=sorted(os.listdir("./tortoise/voices")) + ["microphone"])
def export_exec_settings( share, listen_path, check_for_updates, low_vram, embed_output_metadata, latents_lean_and_mean, cond_latent_max_chunk_size, sample_batch_size, concurrency_count ):
args.share = share
args.listen_path = listen_path
args.low_vram = low_vram
args.check_for_updates = check_for_updates
args.cond_latent_max_chunk_size = cond_latent_max_chunk_size
args.sample_batch_size = sample_batch_size
args.embed_output_metadata = embed_output_metadata
args.latents_lean_and_mean = latents_lean_and_mean
args.concurrency_count = concurrency_count
settings = {
'share': args.share,
'listen-path': args.listen_path,
'low-vram':args.low_vram,
'check-for-updates':args.check_for_updates,
'cond-latent-max-chunk-size': args.cond_latent_max_chunk_size,
'sample-batch-size': args.sample_batch_size,
'embed-output-metadata': args.embed_output_metadata,
'latents-lean-and-mean': args.latents_lean_and_mean,
'concurrency-count': args.concurrency_count,
}
with open(f'./config/exec.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(settings, indent='\t') )
def setup_args():
default_arguments = {
'share': False,
'listen-path': None,
'listen-host': '127.0.0.1',
'listen-port': 8000,
'check-for-updates': False,
'low-vram': False,
'sample-batch-size': None,
'embed-output-metadata': True,
'latents-lean-and-mean': True,
'cond-latent-max-chunk-size': 1000000,
'concurrency-count': 3,
}
if os.path.isfile('./config/exec.json'):
with open(f'./config/exec.json', 'r', encoding="utf-8") as f:
overrides = json.load(f)
for k in overrides:
default_arguments[k] = overrides[k]
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--listen-path", default=default_arguments['listen-path'], help="Path for Gradio to listen on")
parser.add_argument("--listen-host", default=default_arguments['listen-host'], help="Host for Gradio to listen on")
parser.add_argument("--listen-port", default=default_arguments['listen-port'], type=int, help="Post for Gradio to listen on")
parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup")
parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage")
parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)")
parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.")
parser.add_argument("--cond-latent-max-chunk-size", default=default_arguments['cond-latent-max-chunk-size'], type=int, help="Sets an upper limit to audio chunk size when computing conditioning latents")
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets an upper limit to audio chunk size when computing conditioning latents")
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
args = parser.parse_args()
args.embed_output_metadata = not args.no_embed_output_metadata
return args
def setup_tortoise():
print("Initializating TorToiSe...")
tts = TextToSpeech(minor_optimizations=not args.low_vram)
print("TorToiSe initialized, ready for generation.")
return tts
def setup_gradio():
if not args.share:
def noop(function, return_value=None):
def wrapped(*args, **kwargs):
return return_value
return wrapped
gradio.utils.version_check = noop(gradio.utils.version_check)
gradio.utils.initiated_analytics = noop(gradio.utils.initiated_analytics)
gradio.utils.launch_analytics = noop(gradio.utils.launch_analytics)
gradio.utils.integration_analytics = noop(gradio.utils.integration_analytics)
gradio.utils.error_analytics = noop(gradio.utils.error_analytics)
gradio.utils.log_feature_analytics = noop(gradio.utils.log_feature_analytics)
#gradio.utils.get_local_ip_address = noop(gradio.utils.get_local_ip_address, 'localhost')
with gr.Blocks() as webui:
with gr.Tab("Generate"):
with gr.Row():
with gr.Column():
text = gr.Textbox(lines=4, label="Prompt")
delimiter = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n")
emotion = gr.Radio(
["Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="Custom",
label="Emotion",
type="value",
interactive=True
)
prompt = gr.Textbox(lines=1, label="Custom Emotion + Prompt (if selected)")
voice = gr.Dropdown(
sorted(os.listdir("./tortoise/voices")) + ["microphone"],
label="Voice",
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
source="microphone",
type="filepath",
)
refresh_voices = gr.Button(value="Refresh Voice List")
refresh_voices.click(update_voices,
inputs=None,
outputs=voice
)
prompt.change(fn=lambda value: gr.update(value="Custom"),
inputs=prompt,
outputs=emotion
)
mic_audio.change(fn=lambda value: gr.update(value="microphone"),
inputs=mic_audio,
outputs=voice
)
with gr.Column():
candidates = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates")
seed = gr.Number(value=0, precision=0, label="Seed")
preset = gr.Radio(
["Ultra Fast", "Fast", "Standard", "High Quality"],
label="Preset",
type="value",
)
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
breathing_room = gr.Slider(value=8, minimum=1, maximum=32, step=1, label="Pause Size")
diffusion_sampler = gr.Radio(
["P", "DDIM"], # + ["K_Euler_A", "DPM++2M"],
value="P",
label="Diffusion Samplers",
type="value",
)
preset.change(fn=update_presets,
inputs=preset,
outputs=[
num_autoregressive_samples,
diffusion_iterations,
],
)
with gr.Column():
selected_voice = gr.Audio(label="Source Sample")
output_audio = gr.Audio(label="Output")
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
submit = gr.Button(value="Generate")
#stop = gr.Button(value="Stop")
with gr.Tab("Utilities"):
with gr.Row():
with gr.Column():
audio_in = gr.File(type="file", label="Audio Input", file_types=["audio"])
copy_button = gr.Button(value="Copy Settings")
with gr.Column():
metadata_out = gr.JSON(label="Audio Metadata")
latents_out = gr.File(type="binary", label="Voice Latents")
audio_in.upload(
fn=read_generate_settings,
inputs=audio_in,
outputs=[
metadata_out,
latents_out
]
)
with gr.Tab("Settings"):
with gr.Row():
with gr.Column():
with gr.Box():
exec_arg_gradio_path = gr.Textbox(label="Gradio Path", value=args.listen_path, placeholder="/")
exec_arg_share = gr.Checkbox(label="Public Share Gradio", value=args.share)
exec_check_for_updates = gr.Checkbox(label="Check For Updates", value=args.check_for_updates)
exec_arg_low_vram = gr.Checkbox(label="Low VRAM", value=args.low_vram)
exec_arg_embed_output_metadata = gr.Checkbox(label="Embed Output Metadata", value=args.embed_output_metadata)
exec_arg_latents_lean_and_mean = gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean)
exec_arg_cond_latent_max_chunk_size = gr.Number(label="Voice Latents Max Chunk Size", precision=0, value=args.cond_latent_max_chunk_size)
exec_arg_sample_batch_size = gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size)
exec_arg_concurrency_count = gr.Number(label="Concurrency Count", precision=0, value=args.concurrency_count)
experimentals = gr.CheckboxGroup(["Half Precision", "Conditioning-Free"], value=["Conditioning-Free"], label="Experimental Flags")
cvvp_weight = gr.Slider(value=0, minimum=0, maximum=1, label="CVVP Weight")
check_updates_now = gr.Button(value="Check for Updates")
exec_inputs = [exec_arg_share, exec_arg_gradio_path, exec_check_for_updates, exec_arg_low_vram, exec_arg_embed_output_metadata, exec_arg_latents_lean_and_mean, exec_arg_cond_latent_max_chunk_size, exec_arg_sample_batch_size, exec_arg_concurrency_count]
for i in exec_inputs:
i.change(
fn=export_exec_settings,
inputs=exec_inputs
)
check_updates_now.click(check_for_updates)
input_settings = [
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
experimentals,
]
submit_event = submit.click(generate,
inputs=input_settings,
outputs=[selected_voice, output_audio, usedSeed],
)
copy_button.click(import_generate_settings,
inputs=audio_in, # JSON elements cannt be used as inputs
outputs=input_settings
)
if os.path.isfile('./config/generate.json'):
webui.load(import_generate_settings, inputs=None, outputs=input_settings)
if args.check_for_updates:
webui.load(check_for_updates)
#stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
webui.queue(concurrency_count=args.concurrency_count)
return webui
if __name__ == "__main__":
args = setup_args()
if args.listen_path is not None and args.listen_path != "/":
import uvicorn
uvicorn.run("app:app", host=args.listen_host, port=args.listen_port)
else:
webui = setup_gradio().launch(share=args.share, prevent_thread_lock=True)
tts = setup_tortoise()
webui.block_thread()
elif __name__ == "app":
import sys
from fastapi import FastAPI
sys.argv = [sys.argv[0]]
app = FastAPI()
args = setup_args()
webui = setup_gradio()
app = gr.mount_gradio_app(app, webui, path=args.listen_path)
tts = setup_tortoise()