170 lines
5.5 KiB
Cython
170 lines
5.5 KiB
Cython
#!python
|
|
# cython: language_level=3
|
|
|
|
import ffmpeg
|
|
import numpy as np
|
|
import urllib.request
|
|
import os
|
|
from pathlib import Path
|
|
|
|
MODELS_DIR = str(Path('~/.ggml-models').expanduser())
|
|
|
|
|
|
cimport numpy as cnp
|
|
|
|
cdef int SAMPLE_RATE = 16000
|
|
cdef char* TEST_FILE = 'test.wav'
|
|
cdef char* DEFAULT_MODEL = 'base'
|
|
cdef char* LANGUAGE = b'en'
|
|
cdef int N_THREADS = os.cpu_count()
|
|
cdef _Bool PRINT_REALTIME = False
|
|
cdef _Bool PRINT_PROGRESS = False
|
|
cdef _Bool TRANSLATE = False
|
|
|
|
|
|
MODELS = {
|
|
'ggml-tiny.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-tiny.bin',
|
|
'ggml-tiny.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-tiny.en.bin',
|
|
'ggml-base.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-base.bin',
|
|
'ggml-base.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin',
|
|
'ggml-small.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-small.bin',
|
|
'ggml-small.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-small.en.bin',
|
|
'ggml-medium.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-medium.bin',
|
|
'ggml-medium.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-medium.en.bin',
|
|
'ggml-large-v1.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-large-v1.bin',
|
|
'ggml-large.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-large.bin',
|
|
}
|
|
|
|
def model_exists(model, models_dir=MODELS_DIR):
|
|
return os.path.exists(Path(models_dir).joinpath(model))
|
|
|
|
def download_model(model, models_dir=MODELS_DIR):
|
|
"""Downloads ggml model with the given identifier
|
|
|
|
The filenames mirror the ones given in ggerganov's repos.
|
|
e.g. 'small' becomes 'ggml-small.bin'
|
|
|
|
Args:
|
|
model: The model identifier
|
|
models_dir: The path where the file is written to
|
|
"""
|
|
if model_exists(model, models_dir=models_dir):
|
|
return
|
|
|
|
print(f'Downloading {model} to {models_dir}...')
|
|
url = MODELS[model]
|
|
os.makedirs(models_dir, exist_ok=True)
|
|
with urllib.request.urlopen(url) as r:
|
|
with open(Path(models_dir).joinpath(model), 'wb') as f:
|
|
f.write(r.read())
|
|
|
|
|
|
cdef cnp.ndarray[cnp.float32_t, ndim=1, mode="c"] load_audio(bytes file, int sr = SAMPLE_RATE):
|
|
try:
|
|
out = (
|
|
ffmpeg.input(file, threads=0)
|
|
.output(
|
|
"-", format="s16le",
|
|
acodec="pcm_s16le",
|
|
ac=1, ar=sr
|
|
)
|
|
.run(
|
|
cmd=["ffmpeg", "-nostdin"],
|
|
capture_stdout=True,
|
|
capture_stderr=True
|
|
)
|
|
)[0]
|
|
except Exception:
|
|
raise RuntimeError(f"File '{file}' not found")
|
|
|
|
cdef cnp.ndarray[cnp.float32_t, ndim=1, mode="c"] frames = (
|
|
np.frombuffer(out, np.int16)
|
|
.flatten()
|
|
.astype(np.float32)
|
|
) / pow(2, 15)
|
|
|
|
return frames
|
|
|
|
cdef whisper_full_params set_params(_Bool print_realtime, _Bool print_progress, _Bool translate, char* language, int n_threads) nogil:
|
|
cdef whisper_full_params params = whisper_full_default_params(
|
|
whisper_sampling_strategy.WHISPER_SAMPLING_GREEDY
|
|
)
|
|
params.print_realtime = print_realtime
|
|
params.print_progress = print_progress
|
|
params.translate = translate
|
|
params.language = <const char *> language
|
|
params.n_threads = n_threads
|
|
return params
|
|
|
|
cdef class Whisper:
|
|
cdef whisper_context * ctx
|
|
cdef whisper_full_params params
|
|
|
|
def __init__(self, model = DEFAULT_MODEL, models_dir = MODELS_DIR, _Bool print_realtime = PRINT_REALTIME, _Bool print_progress = PRINT_PROGRESS, _Bool translate = TRANSLATE, char* language = LANGUAGE, int n_threads = N_THREADS, _Bool print_system_info = False): # not pretty, look for a way to use kwargs?
|
|
"""Constructor for Whisper class.
|
|
|
|
Automatically checks for model and downloads it if necessary.
|
|
|
|
Args:
|
|
model: Model identifier, e.g. 'base' (see MODELS)
|
|
models_dir: The path where the models should be stored
|
|
print_realtime: whisper.cpp's real time transcription output
|
|
print_progress: whisper.cpp's progress indicator
|
|
translate: whisper.cpp's translation option
|
|
language: Which language to use. Must be a byte string.
|
|
n_threads: Amount of threads to use
|
|
print_system_info: whisper.cpp's system info output
|
|
"""
|
|
model_fullname = f'ggml-{model}.bin' #.encode('utf8')
|
|
download_model(model_fullname, models_dir=models_dir)
|
|
model_path = Path(models_dir).joinpath(model_fullname)
|
|
cdef bytes model_b = str(model_path).encode('utf8')
|
|
self.ctx = whisper_init(model_b)
|
|
self.params = set_params(print_realtime, print_progress, translate, language, n_threads)
|
|
if print_system_info:
|
|
whisper_print_system_info()
|
|
|
|
def __dealloc__(self):
|
|
whisper_free(self.ctx)
|
|
|
|
def transcribe(self, filename = TEST_FILE):
|
|
"""Transcribes from given file.
|
|
|
|
Args:
|
|
filename: Path to file
|
|
|
|
Returns:
|
|
A result id for extract_text(...)
|
|
|
|
Raises:
|
|
RuntimeError: The given file could not be found
|
|
"""
|
|
|
|
#print(f"Loading data from '{filename}'...")
|
|
cdef cnp.ndarray[cnp.float32_t, ndim=1, mode="c"] frames = load_audio(<bytes>filename)
|
|
|
|
#print("Transcribing..")
|
|
return whisper_full(self.ctx, self.params, &frames[0], len(frames))
|
|
|
|
def extract_text(self, int res):
|
|
"""Extracts the text from a transcription.
|
|
|
|
Args:
|
|
res: A result id from transcribe(...)
|
|
|
|
Returns:
|
|
A list of transcribed strings.
|
|
|
|
Raises:
|
|
RuntimeError: The given result id was invalid.
|
|
"""
|
|
#print("Extracting text...")
|
|
if res != 0:
|
|
raise RuntimeError
|
|
cdef int n_segments = whisper_full_n_segments(self.ctx)
|
|
return [
|
|
whisper_full_get_segment_text(self.ctx, i).decode() for i in range(n_segments)
|
|
]
|
|
|
|
|