whispercpp.py/whispercpp.pyx
lightmare af035ea355 init
Changes made (not exhaustive):
- changed defaults
- whisper.cpp submodule set to 1.2.0
- removed `requests` dependency
- models dir can be changed in constructor
- added support for setting params
- added back support for `large-v1` model
- added support for english-only models
2023-02-18 22:59:42 +00:00

170 lines
5.5 KiB
Cython

#!python
# cython: language_level=3
import ffmpeg
import numpy as np
import urllib.request
import os
from pathlib import Path
MODELS_DIR = str(Path('~/.ggml-models').expanduser())
cimport numpy as cnp
cdef int SAMPLE_RATE = 16000
cdef char* TEST_FILE = 'test.wav'
cdef char* DEFAULT_MODEL = 'base'
cdef char* LANGUAGE = b'en'
cdef int N_THREADS = os.cpu_count()
cdef _Bool PRINT_REALTIME = False
cdef _Bool PRINT_PROGRESS = False
cdef _Bool TRANSLATE = False
MODELS = {
'ggml-tiny.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-tiny.bin',
'ggml-tiny.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-tiny.en.bin',
'ggml-base.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-base.bin',
'ggml-base.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin',
'ggml-small.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-small.bin',
'ggml-small.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-small.en.bin',
'ggml-medium.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-medium.bin',
'ggml-medium.en.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-medium.en.bin',
'ggml-large-v1.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-large-v1.bin',
'ggml-large.bin': 'https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-large.bin',
}
def model_exists(model, models_dir=MODELS_DIR):
return os.path.exists(Path(models_dir).joinpath(model))
def download_model(model, models_dir=MODELS_DIR):
"""Downloads ggml model with the given identifier
The filenames mirror the ones given in ggerganov's repos.
e.g. 'small' becomes 'ggml-small.bin'
Args:
model: The model identifier
models_dir: The path where the file is written to
"""
if model_exists(model, models_dir=models_dir):
return
print(f'Downloading {model} to {models_dir}...')
url = MODELS[model]
os.makedirs(models_dir, exist_ok=True)
with urllib.request.urlopen(url) as r:
with open(Path(models_dir).joinpath(model), 'wb') as f:
f.write(r.read())
cdef cnp.ndarray[cnp.float32_t, ndim=1, mode="c"] load_audio(bytes file, int sr = SAMPLE_RATE):
try:
out = (
ffmpeg.input(file, threads=0)
.output(
"-", format="s16le",
acodec="pcm_s16le",
ac=1, ar=sr
)
.run(
cmd=["ffmpeg", "-nostdin"],
capture_stdout=True,
capture_stderr=True
)
)[0]
except Exception:
raise RuntimeError(f"File '{file}' not found")
cdef cnp.ndarray[cnp.float32_t, ndim=1, mode="c"] frames = (
np.frombuffer(out, np.int16)
.flatten()
.astype(np.float32)
) / pow(2, 15)
return frames
cdef whisper_full_params set_params(_Bool print_realtime, _Bool print_progress, _Bool translate, char* language, int n_threads) nogil:
cdef whisper_full_params params = whisper_full_default_params(
whisper_sampling_strategy.WHISPER_SAMPLING_GREEDY
)
params.print_realtime = print_realtime
params.print_progress = print_progress
params.translate = translate
params.language = <const char *> language
n_threads = n_threads
return params
cdef class Whisper:
cdef whisper_context * ctx
cdef whisper_full_params params
def __init__(self, model = DEFAULT_MODEL, models_dir = MODELS_DIR, _Bool print_realtime = PRINT_REALTIME, _Bool print_progress = PRINT_PROGRESS, _Bool translate = TRANSLATE, char* language = LANGUAGE, int n_threads = N_THREADS, _Bool print_system_info = False): # not pretty, look for a way to use kwargs?
"""Constructor for Whisper class.
Automatically checks for model and downloads it if necessary.
Args:
model: Model identifier, e.g. 'base' (see MODELS)
models_dir: The path where the models should be stored
print_realtime: whisper.cpp's real time transcription output
print_progress: whisper.cpp's progress indicator
translate: whisper.cpp's translation option
language: Which language to use. Must be a byte string.
n_threads: Amount of threads to use
print_system_info: whisper.cpp's system info output
"""
model_fullname = f'ggml-{model}.bin' #.encode('utf8')
download_model(model_fullname, models_dir=models_dir)
model_path = Path(models_dir).joinpath(model_fullname)
cdef bytes model_b = str(model_path).encode('utf8')
self.ctx = whisper_init(model_b)
self.params = set_params(print_realtime, print_progress, translate, language, n_threads)
if print_system_info:
whisper_print_system_info()
def __dealloc__(self):
whisper_free(self.ctx)
def transcribe(self, filename = TEST_FILE):
"""Transcribes from given file.
Args:
filename: Path to file
Returns:
A result id for extract_text(...)
Raises:
RuntimeError: The given file could not be found
"""
#print(f"Loading data from '{filename}'...")
cdef cnp.ndarray[cnp.float32_t, ndim=1, mode="c"] frames = load_audio(<bytes>filename)
#print("Transcribing..")
return whisper_full(self.ctx, self.params, &frames[0], len(frames))
def extract_text(self, int res):
"""Extracts the text from a transcription.
Args:
res: A result id from transcribe(...)
Results:
A list of transcribed strings.
Raises:
RuntimeError: The given result id was invalid.
"""
#print("Extracting text...")
if res != 0:
raise RuntimeError
cdef int n_segments = whisper_full_n_segments(self.ctx)
return [
whisper_full_get_segment_text(self.ctx, i).decode() for i in range(n_segments)
]