129 lines
4.9 KiB
Python
129 lines
4.9 KiB
Python
|
import glob
|
||
|
import itertools
|
||
|
import random
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import os
|
||
|
|
||
|
from data import util
|
||
|
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
|
||
|
from data.image_corruptor import ImageCorruptor
|
||
|
|
||
|
|
||
|
class ImageFolderDataset:
|
||
|
def __init__(self, opt):
|
||
|
self.opt = opt
|
||
|
self.corruptor = ImageCorruptor(opt)
|
||
|
self.target_hq_size = opt['target_size'] if 'target_size' in opt.keys() else None
|
||
|
self.multiple = opt['force_multiple'] if 'force_multiple' in opt.keys() else 1
|
||
|
self.scale = opt['scale']
|
||
|
self.paths = opt['paths']
|
||
|
self.corrupt_before_downsize = opt['corrupt_before_downsize'] if 'corrupt_before_downsize' in opt.keys() else False
|
||
|
assert (self.target_hq_size // self.scale) % self.multiple == 0 # If we dont throw here, we get some really obscure errors.
|
||
|
if not isinstance(self.paths, list):
|
||
|
self.paths = [self.paths]
|
||
|
self.weights = [1]
|
||
|
else:
|
||
|
self.weights = opt['weights']
|
||
|
|
||
|
# Just scan the given directory for images of standard types.
|
||
|
supported_types = ['jpg', 'JPG', 'jpeg', 'JPEG', 'png', 'PNG', 'gif', 'GIF']
|
||
|
self.image_paths = []
|
||
|
for path, weight in zip(self.paths, self.weights):
|
||
|
cache_path = os.path.join(path, 'cache.pth')
|
||
|
if os.path.exists(cache_path):
|
||
|
imgs = torch.load(cache_path)
|
||
|
else:
|
||
|
print("Building image folder cache, this can take some time for large datasets..")
|
||
|
imgs = []
|
||
|
for ext in supported_types:
|
||
|
imgs.extend(glob.glob(os.path.join(path, "*." + ext)))
|
||
|
torch.save(imgs, cache_path)
|
||
|
for w in range(weight):
|
||
|
self.image_paths.extend(imgs)
|
||
|
self.len = len(self.image_paths)
|
||
|
|
||
|
def get_paths(self):
|
||
|
return self.image_paths
|
||
|
|
||
|
# Given an HQ square of arbitrary size, resizes it to specifications from opt.
|
||
|
def resize_hq(self, imgs_hq):
|
||
|
# Enforce size constraints
|
||
|
h, w, _ = imgs_hq[0].shape
|
||
|
if self.target_hq_size is not None and self.target_hq_size != h:
|
||
|
hqs_adjusted = []
|
||
|
for hq in imgs_hq:
|
||
|
# It is assumed that the target size is a square.
|
||
|
target_size = (self.target_hq_size, self.target_hq_size)
|
||
|
hqs_adjusted.append(cv2.resize(hq, target_size, interpolation=cv2.INTER_AREA))
|
||
|
h, w = self.target_hq_size, self.target_hq_size
|
||
|
else:
|
||
|
hqs_adjusted = imgs_hq
|
||
|
hq_multiple = self.multiple * self.scale # Multiple must apply to LQ image.
|
||
|
if h % hq_multiple != 0 or w % hq_multiple != 0:
|
||
|
hqs_conformed = []
|
||
|
for hq in hqs_adjusted:
|
||
|
h, w = (h - h % hq_multiple), (w - w % hq_multiple)
|
||
|
hqs_conformed.append(hq[:h, :w, :])
|
||
|
return hqs_conformed
|
||
|
return hqs_adjusted
|
||
|
|
||
|
def synthesize_lq(self, hs):
|
||
|
h, w, _ = hs[0].shape
|
||
|
ls = []
|
||
|
if self.corrupt_before_downsize:
|
||
|
hs = self.corruptor.corrupt_images(hs)
|
||
|
for hq in hs:
|
||
|
ls.append(cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_AREA))
|
||
|
# Corrupt the LQ image (only in eval mode)
|
||
|
if not self.corrupt_before_downsize:
|
||
|
ls = self.corruptor.corrupt_images(ls)
|
||
|
return ls
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.len
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
hq = util.read_img(None, self.image_paths[item], rgb=True)
|
||
|
|
||
|
hs = self.resize_hq([hq])
|
||
|
ls = self.synthesize_lq(hs)
|
||
|
|
||
|
# Convert to torch tensor
|
||
|
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float()
|
||
|
lq = torch.from_numpy(np.ascontiguousarray(np.transpose(ls[0], (2, 0, 1)))).float()
|
||
|
|
||
|
return {'LQ': lq, 'GT': hq, 'LQ_path': self.image_paths[item], 'GT_path': self.image_paths[item]}
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
opt = {
|
||
|
'name': 'amalgam',
|
||
|
'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\random_100_1024px'],
|
||
|
'weights': [1],
|
||
|
'target_size': 128,
|
||
|
'force_multiple': 32,
|
||
|
'scale': 2,
|
||
|
'fixed_corruptions': ['jpeg-broad', 'gaussian_blur'],
|
||
|
'random_corruptions': ['noise-5', 'none'],
|
||
|
'num_corrupts_per_image': 1,
|
||
|
'corrupt_before_downsize': True,
|
||
|
}
|
||
|
|
||
|
ds = ImageFolderDataset(opt)
|
||
|
import os
|
||
|
os.makedirs("debug", exist_ok=True)
|
||
|
for i in range(0, len(ds)):
|
||
|
o = ds[random.randint(0, len(ds))]
|
||
|
#for k, v in o.items():
|
||
|
k = 'LQ'
|
||
|
v = o[k]
|
||
|
#if 'LQ' in k and 'path' not in k and 'center' not in k:
|
||
|
#if 'full' in k:
|
||
|
#masked = v[:3, :, :] * v[3]
|
||
|
#torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k))
|
||
|
#v = v[:3, :, :]
|
||
|
import torchvision
|
||
|
torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))
|