101 lines
3.8 KiB
Python
101 lines
3.8 KiB
Python
|
import logging
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import models.networks as networks
|
||
|
import models.lr_scheduler as lr_scheduler
|
||
|
from .base_model import BaseModel
|
||
|
|
||
|
logger = logging.getLogger('base')
|
||
|
|
||
|
|
||
|
class FeatureModel(BaseModel):
|
||
|
def __init__(self, opt):
|
||
|
super(FeatureModel, self).__init__(opt)
|
||
|
|
||
|
if opt['dist']:
|
||
|
self.rank = torch.distributed.get_rank()
|
||
|
else:
|
||
|
self.rank = -1 # non dist training
|
||
|
train_opt = opt['train']
|
||
|
|
||
|
self.fea_train = networks.define_F(opt, for_training=True).to(self.device)
|
||
|
self.net_ref = networks.define_F(opt).to(self.device)
|
||
|
|
||
|
self.load()
|
||
|
|
||
|
if self.is_train:
|
||
|
self.fea_train.train()
|
||
|
|
||
|
# loss
|
||
|
self.cri_fea = nn.MSELoss().to(self.device)
|
||
|
|
||
|
# optimizers
|
||
|
wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0
|
||
|
optim_params = []
|
||
|
for k, v in self.fea_train.named_parameters(): # can optimize for a part of the model
|
||
|
if v.requires_grad:
|
||
|
optim_params.append(v)
|
||
|
else:
|
||
|
if self.rank <= 0:
|
||
|
logger.warning('Params [{:s}] will not optimize.'.format(k))
|
||
|
self.optimizer_G = torch.optim.Adam(optim_params, lr=train_opt['lr_G'],
|
||
|
weight_decay=wd_G,
|
||
|
betas=(train_opt['beta1_G'], train_opt['beta2_G']))
|
||
|
self.optimizers.append(self.optimizer_G)
|
||
|
|
||
|
# schedulers
|
||
|
if train_opt['lr_scheme'] == 'MultiStepLR':
|
||
|
for optimizer in self.optimizers:
|
||
|
self.schedulers.append(
|
||
|
lr_scheduler.MultiStepLR_Restart(optimizer, train_opt['gen_lr_steps'],
|
||
|
restarts=train_opt['restarts'],
|
||
|
weights=train_opt['restart_weights'],
|
||
|
gamma=train_opt['lr_gamma'],
|
||
|
clear_state=train_opt['clear_state']))
|
||
|
elif train_opt['lr_scheme'] == 'CosineAnnealingLR_Restart':
|
||
|
for optimizer in self.optimizers:
|
||
|
self.schedulers.append(
|
||
|
lr_scheduler.CosineAnnealingLR_Restart(
|
||
|
optimizer, train_opt['T_period'], eta_min=train_opt['eta_min'],
|
||
|
restarts=train_opt['restarts'], weights=train_opt['restart_weights']))
|
||
|
else:
|
||
|
raise NotImplementedError('MultiStepLR learning rate scheme is enough.')
|
||
|
|
||
|
self.log_dict = OrderedDict()
|
||
|
|
||
|
def feed_data(self, data, need_GT=True):
|
||
|
self.var_L = data['LQ'].to(self.device) # LQ
|
||
|
if need_GT:
|
||
|
self.real_H = data['GT'].to(self.device) # GT
|
||
|
|
||
|
def optimize_parameters(self, step):
|
||
|
self.optimizer_G.zero_grad()
|
||
|
self.fake_H = self.fea_train(self.var_L, interpolate_factor=2)
|
||
|
ref_H = self.net_ref(self.real_H)
|
||
|
l_fea = self.cri_fea(self.fake_H, ref_H)
|
||
|
l_fea.backward()
|
||
|
self.optimizer_G.step()
|
||
|
|
||
|
# set log
|
||
|
self.log_dict['l_fea'] = l_fea.item()
|
||
|
|
||
|
def test(self):
|
||
|
pass
|
||
|
|
||
|
def get_current_log(self, step):
|
||
|
return self.log_dict
|
||
|
|
||
|
def get_current_visuals(self, need_GT=True):
|
||
|
return None
|
||
|
|
||
|
def load(self):
|
||
|
load_path_G = self.opt['path']['pretrain_model_G']
|
||
|
if load_path_G is not None:
|
||
|
logger.info('Loading model for F [{:s}] ...'.format(load_path_G))
|
||
|
self.load_network(load_path_G, self.fea_train, self.opt['path']['strict_load'])
|
||
|
|
||
|
def save(self, iter_label):
|
||
|
self.save_network(self.fea_train, 'G', iter_label)
|