2021-01-25 15:25:29 +00:00
import math
import torch
import torch . nn as nn
import switched_conv_cuda_naive
from lambda_networks import LambdaLayer
from torch . nn import init , Conv2d , MSELoss
import torch . nn . functional as F
from tqdm import tqdm
2021-01-26 16:31:53 +00:00
import torch . distributed as dist
2021-01-25 15:25:29 +00:00
2021-02-03 03:35:58 +00:00
from trainer . losses import ConfigurableLoss
def SwitchedConvRoutingNormal ( input , selector , weight , bias , stride = 1 ) :
convs = [ ]
b , s , h , w = selector . shape
for sel in range ( s ) :
convs . append ( F . conv2d ( input , weight [ : , : , sel , : , : ] , bias , stride = stride , padding = weight . shape [ - 1 ] / / 2 ) )
output = torch . stack ( convs , dim = 1 ) * selector . unsqueeze ( dim = 2 )
return output . sum ( dim = 1 )
2021-01-25 15:25:29 +00:00
class SwitchedConvHardRoutingFunction ( torch . autograd . Function ) :
@staticmethod
def forward ( ctx , input , selector , weight , bias , stride = 1 ) :
# Build hard attention mask from selector input
b , s , h , w = selector . shape
2021-02-03 03:35:58 +00:00
mask = selector . argmax ( dim = 1 ) . int ( )
output = switched_conv_cuda_naive . forward ( input , mask , weight , bias , stride )
2021-01-25 15:25:29 +00:00
ctx . stride = stride
ctx . breadth = s
ctx . save_for_backward ( * [ input , mask , weight , bias ] )
2021-02-03 03:35:58 +00:00
return output
2021-01-25 15:25:29 +00:00
@staticmethod
def backward ( ctx , grad ) :
input , mask , weight , bias = ctx . saved_tensors
2021-02-03 03:35:58 +00:00
grad , grad_sel , grad_w , grad_b = switched_conv_cuda_naive . backward ( input , grad . contiguous ( ) , mask , weight , bias , ctx . stride )
return grad , grad_sel , grad_w , grad_b , None
2021-01-25 15:25:29 +00:00
2021-02-03 03:35:58 +00:00
# Implements KeepTopK where k=1 from mixture of experts paper.
class KeepTop1 ( torch . autograd . Function ) :
@staticmethod
def forward ( ctx , input ) :
mask = torch . nn . functional . one_hot ( input . argmax ( dim = 1 ) , num_classes = input . shape [ 1 ] ) . permute ( 0 , 3 , 1 , 2 )
input [ mask != 1 ] = - float ( ' inf ' )
ctx . save_for_backward ( mask )
return input
@staticmethod
def backward ( ctx , grad ) :
import pydevd
pydevd . settrace ( suspend = False , trace_only_current_thread = True )
mask = ctx . saved_tensors
grad_input = grad . clone ( )
grad_input [ mask != 1 ] = 0
return grad_input
class RouteTop1 ( torch . autograd . Function ) :
@staticmethod
def forward ( ctx , input ) :
mask = torch . nn . functional . one_hot ( input . argmax ( dim = 1 ) , num_classes = input . shape [ 1 ] ) . permute ( 0 , 3 , 1 , 2 )
out = torch . ones_like ( input )
out [ mask != 1 ] = 0
ctx . save_for_backward ( mask , input . clone ( ) )
return out
@staticmethod
def backward ( ctx , grad ) :
# Enable breakpoints in this function: (Comment out if not debugging)
#import pydevd
#pydevd.settrace(suspend=False, trace_only_current_thread=True)
mask , input = ctx . saved_tensors
input [ mask != 1 ] = 1
grad_input = grad . clone ( )
grad_input [ mask != 1 ] = 0
grad_input_n = grad_input / input # Above, we made everything either a zero or a one. Unscale the ones by dividing by the unmasked inputs.
return grad_input_n
2021-01-25 15:25:29 +00:00
2021-01-26 16:31:53 +00:00
"""
SwitchNorm is meant to be applied against the Softmax output of an switching function across a large set of
switch computations . It is meant to promote an equal distribution of switch weights by decreasing the magnitude
of switch weights that are over - used and increasing the magnitude of under - used weights .
The return value has the exact same format as a normal Softmax output and can be used directly into the input of an
switch equation .
Since the whole point of convolutional switch is to enable training extra - wide networks to operate on a large number
of image categories , it makes almost no sense to perform this type of norm against a single mini - batch of images : some
of the switches will not be used in such a small context - and that ' s good! This is solved by accumulating. Every
forward pass computes a norm across the current minibatch . That norm is added into a rotating buffer of size
< accumulator_size > . The actual normalization occurs across the entire rotating buffer .
You should set accumulator size according to two factors :
- Your batch size . Smaller batch size should mean greater accumulator size .
- Your image diversity . More diverse images have less need for the accumulator .
- How wide your switch / switching group size is . More groups mean you ' re going to want more accumulation.
Note : This norm makes the ( potentially flawed ) assumption that each forward ( ) pass has unique data . For maximum
effectiveness , avoid doing this - or make alterations to work around it .
Note : This norm does nothing for the first < accumulator_size > iterations .
"""
class SwitchNorm ( nn . Module ) :
def __init__ ( self , group_size , accumulator_size = 128 ) :
super ( ) . __init__ ( )
self . accumulator_desired_size = accumulator_size
self . group_size = group_size
self . register_buffer ( " accumulator_index " , torch . zeros ( 1 , dtype = torch . long , device = ' cpu ' ) )
self . register_buffer ( " accumulator_filled " , torch . zeros ( 1 , dtype = torch . long , device = ' cpu ' ) )
self . register_buffer ( " accumulator " , torch . zeros ( accumulator_size , group_size ) )
def add_norm_to_buffer ( self , x ) :
flat = x . sum ( dim = [ 0 , 2 , 3 ] )
norm = flat / torch . mean ( flat )
self . accumulator [ self . accumulator_index ] = norm . detach ( ) . clone ( )
self . accumulator_index + = 1
if self . accumulator_index > = self . accumulator_desired_size :
self . accumulator_index * = 0
if self . accumulator_filled < = 0 :
self . accumulator_filled + = 1
# Input into forward is a switching tensor of shape (batch,groups,width,height)
def forward ( self , x : torch . Tensor , update_attention_norm = True ) :
assert len ( x . shape ) == 4
# Push the accumulator to the right device on the first iteration.
if self . accumulator . device != x . device :
self . accumulator = self . accumulator . to ( x . device )
# In eval, don't change the norm buffer.
if self . training and update_attention_norm :
self . add_norm_to_buffer ( x )
# Reduce across all distributed entities, if needed
if dist . is_available ( ) and dist . is_initialized ( ) :
dist . all_reduce ( self . accumulator , op = dist . ReduceOp . SUM )
self . accumulator / = dist . get_world_size ( )
# Compute the norm factor.
if self . accumulator_filled > 0 :
norm = torch . mean ( self . accumulator , dim = 0 )
else :
norm = torch . ones ( self . group_size , device = self . accumulator . device )
x = x / norm . view ( 1 , - 1 , 1 , 1 )
# Need to re-normalize x so that the groups dimension sum to 1, just like when it was fed in.
return x / x . sum ( dim = 1 , keepdim = True )
2021-02-03 03:35:58 +00:00
class MixtureOfExperts2dRouter ( nn . Module ) :
def __init__ ( self , num_experts ) :
super ( ) . __init__ ( )
self . num_experts = num_experts
self . wnoise = nn . Parameter ( torch . zeros ( 1 , num_experts , 1 , 1 ) )
self . wg = nn . Parameter ( torch . zeros ( 1 , num_experts , 1 , 1 ) )
def forward ( self , x ) :
wg = x * self . wg
wnoise = nn . functional . softplus ( x * self . wnoise )
H = wg + torch . randn_like ( x ) * wnoise
# Produce the load-balancing loss.
eye = torch . eye ( self . num_experts , device = x . device ) . view ( 1 , self . num_experts , self . num_experts , 1 , 1 )
mask = torch . abs ( 1 - eye )
b , c , h , w = H . shape
ninf = torch . zeros_like ( eye )
ninf [ eye == 1 ] = - float ( ' inf ' )
H_masked = H . view ( b , c , 1 , h , w ) * mask + ninf # ninf is necessary because otherwise torch.max() will not pick up negative numbered maxes.
max_excluding = torch . max ( H_masked , dim = 2 ) [ 0 ]
# load_loss and G are stored as local members to facilitate their use by hard routing regularization losses.
# this is a risky op - it can easily result in memory leakage. Clients *must* use self.reset() below.
self . load_loss = torch . erf ( ( wg - max_excluding ) / wnoise )
#self.G = nn.functional.softmax(KeepTop1.apply(H), dim=1) The paper proposes this equation, but performing a softmax on a Top-1 per the paper results in zero gradients into H, so:
self . G = RouteTop1 . apply ( nn . functional . softmax ( H , dim = 1 ) ) # This variant can route gradients downstream.
return self . G
# Retrieve the locally stored loss values and delete them from membership (so as to not waste memory)
def reset ( self ) :
G , load = self . G , self . load_loss
del self . G
del self . load_loss
return G , load
# Loss that finds instances of MixtureOfExperts2dRouter in the given network and extracts their custom losses.
class MixtureOfExpertsLoss ( ConfigurableLoss ) :
def __init__ ( self , opt , env ) :
super ( ) . __init__ ( opt , env )
self . routers = [ ] # This is filled in during the first forward() pass and cached from there.
self . first_forward_encountered = False
self . load_weight = opt [ ' load_weight ' ]
self . importance_weight = opt [ ' importance_weight ' ]
def forward ( self , net , state ) :
if not self . first_forward_encountered :
for m in net . modules ( ) :
if isinstance ( m , MixtureOfExperts2dRouter ) :
self . routers . append ( m )
self . first_forward_encountered = True
l_importance = 0
l_load = 0
for r in self . routers :
G , L = r . reset ( )
l_importance + = G . var ( ) . square ( )
l_load + = L . var ( ) . square ( )
return l_importance * self . importance_weight + l_load * self . load_weight
class SwitchTransformersLoadBalancer ( nn . Module ) :
def __init__ ( self ) :
super ( ) . __init__ ( )
self . norm = SwitchNorm ( 8 , accumulator_size = 256 )
def forward ( self , x ) :
self . soft = self . norm ( nn . functional . softmax ( x , dim = 1 ) )
self . hard = RouteTop1 . apply ( self . soft ) # This variant can route gradients downstream.
return self . hard
def reset ( self ) :
soft , hard = self . soft , self . hard
del self . soft , self . hard
return soft , hard
class SwitchTransformersLoadBalancingLoss ( ConfigurableLoss ) :
def __init__ ( self , opt , env ) :
super ( ) . __init__ ( opt , env )
self . routers = [ ] # This is filled in during the first forward() pass and cached from there.
self . first_forward_encountered = False
def forward ( self , net , state ) :
if not self . first_forward_encountered :
for m in net . modules ( ) :
if isinstance ( m , SwitchTransformersLoadBalancer ) :
self . routers . append ( m )
self . first_forward_encountered = True
loss = 0
for r in self . routers :
soft , hard = r . reset ( )
N = hard . shape [ 1 ]
h_mean = hard . mean ( dim = [ 0 , 2 , 3 ] )
s_mean = soft . mean ( dim = [ 0 , 2 , 3 ] )
loss + = torch . dot ( h_mean , s_mean ) * N
return loss
2021-01-25 15:25:29 +00:00
class SwitchedConvHardRouting ( nn . Module ) :
2021-01-26 16:31:53 +00:00
def __init__ ( self ,
in_c ,
out_c ,
kernel_sz ,
breadth ,
stride = 1 ,
bias = True ,
dropout_rate = 0.0 ,
include_coupler : bool = False , # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
coupler_mode : str = ' standard ' ,
2021-02-03 03:35:58 +00:00
coupler_dim_in : int = 0 ) :
2021-01-25 15:25:29 +00:00
super ( ) . __init__ ( )
self . in_channels = in_c
self . out_channels = out_c
self . kernel_size = kernel_sz
self . stride = stride
self . has_bias = bias
self . breadth = breadth
self . dropout_rate = dropout_rate
if include_coupler :
if coupler_mode == ' standard ' :
2021-02-03 03:35:58 +00:00
self . coupler = Conv2d ( coupler_dim_in , breadth , kernel_size = 1 , stride = self . stride )
2021-01-25 15:25:29 +00:00
elif coupler_mode == ' lambda ' :
2021-01-26 16:31:53 +00:00
self . coupler = nn . Sequential ( nn . Conv2d ( coupler_dim_in , coupler_dim_in , 1 ) ,
nn . BatchNorm2d ( coupler_dim_in ) ,
nn . ReLU ( ) ,
LambdaLayer ( dim = coupler_dim_in , dim_out = breadth , r = 23 , dim_k = 16 , heads = 2 , dim_u = 1 ) ,
nn . BatchNorm2d ( breadth ) ,
nn . ReLU ( ) ,
2021-02-03 03:35:58 +00:00
Conv2d ( breadth , breadth , 1 , stride = self . stride ) )
2021-01-25 15:25:29 +00:00
else :
self . coupler = None
2021-02-03 03:35:58 +00:00
#self.gate = MixtureOfExperts2dRouter(breadth)
self . gate = SwitchTransformersLoadBalancer ( )
2021-01-25 15:25:29 +00:00
self . weight = nn . Parameter ( torch . empty ( out_c , in_c , breadth , kernel_sz , kernel_sz ) )
if bias :
self . bias = nn . Parameter ( torch . empty ( out_c ) )
else :
self . bias = torch . zeros ( out_c )
self . reset_parameters ( )
def reset_parameters ( self ) - > None :
init . kaiming_uniform_ ( self . weight , a = math . sqrt ( 5 ) )
if self . bias is not None :
fan_in , _ = init . _calculate_fan_in_and_fan_out ( self . weight [ : , : , 0 , : , : ] )
bound = 1 / math . sqrt ( fan_in )
init . uniform_ ( self . bias , - bound , bound )
def load_weights_from_conv ( self , cnv ) :
sd = cnv . state_dict ( )
sd [ ' weight ' ] = sd [ ' weight ' ] . unsqueeze ( 2 ) . repeat ( 1 , 1 , self . breadth , 1 , 1 )
self . load_state_dict ( sd )
def forward ( self , input , selector = None ) :
if self . bias . device != input . device :
self . bias = self . bias . to ( input . device ) # Because this bias can be a tensor that is not moved with the rest of the module.
# If a coupler was specified, run that to convert selector into a softmax distribution.
if self . coupler :
if selector is None : # A coupler can convert from any input to a selector, so 'None' is allowed.
2021-02-03 03:35:58 +00:00
selector = input
selector = self . coupler ( selector )
2021-01-25 15:25:29 +00:00
assert selector is not None
# Apply dropout at the batch level per kernel.
if self . training and self . dropout_rate > 0 :
b , c , h , w = selector . shape
drop = torch . rand ( ( b , c , 1 , 1 ) , device = input . device ) > self . dropout_rate
# Ensure that there is always at least one switch left un-dropped out
fix_blank = ( drop . sum ( dim = 1 , keepdim = True ) == 0 ) . repeat ( 1 , c , 1 , 1 )
drop = drop . logical_or ( fix_blank )
selector = drop * selector
2021-02-03 03:35:58 +00:00
selector = self . gate ( selector )
2021-01-26 16:31:53 +00:00
# Debugging variables
self . last_select = selector . detach ( ) . clone ( )
self . latest_masks = ( selector . max ( dim = 1 , keepdim = True ) [ 0 ] . repeat ( 1 , self . breadth , 1 , 1 ) == selector ) . float ( ) . argmax ( dim = 1 )
2021-02-03 03:35:58 +00:00
if False :
# This is a custom CUDA implementation which should be faster and less memory intensive (once completed).
return SwitchedConvHardRoutingFunction . apply ( input , selector , self . weight , self . bias , self . stride )
else :
# This composes the switching functionality using raw Torch, which basically consists of computing each of <breadth> convs separately and combining them.
return SwitchedConvRoutingNormal ( input , selector , self . weight , self . bias , self . stride )
2021-01-25 15:25:29 +00:00
# Given a state_dict and the module that that sd belongs to, strips out all Conv2d.weight parameters and replaces them
# with the equivalent SwitchedConv.weight parameters. Does not create coupler params.
def convert_conv_net_state_dict_to_switched_conv ( module , switch_breadth , ignore_list = [ ] ) :
state_dict = module . state_dict ( )
for name , m in module . named_modules ( ) :
2021-01-26 16:31:53 +00:00
if not isinstance ( m , nn . Conv2d ) :
continue
2021-01-25 15:25:29 +00:00
ignored = False
for smod in ignore_list :
if smod in name :
ignored = True
continue
if ignored :
continue
2021-02-03 03:35:58 +00:00
if name == ' ' :
key = ' weight '
else :
key = f ' { name } .weight '
state_dict [ key ] = state_dict [ key ] . unsqueeze ( 2 ) . repeat ( 1 , 1 , switch_breadth , 1 , 1 )
2021-01-25 15:25:29 +00:00
return state_dict
def test_net ( ) :
for j in tqdm ( range ( 100 ) ) :
base_conv = Conv2d ( 32 , 64 , 3 , stride = 2 , padding = 1 , bias = True ) . to ( ' cuda ' )
mod_conv = SwitchedConvHardRouting ( 32 , 64 , 3 , breadth = 8 , stride = 2 , bias = True , include_coupler = True , coupler_dim_in = 32 , dropout_rate = .2 ) . to ( ' cuda ' )
mod_sd = convert_conv_net_state_dict_to_switched_conv ( base_conv , 8 )
mod_conv . load_state_dict ( mod_sd , strict = False )
inp = torch . randn ( ( 128 , 32 , 128 , 128 ) , device = ' cuda ' )
out1 = base_conv ( inp )
out2 = mod_conv ( inp , None )
compare = ( out2 + torch . rand_like ( out2 ) * 1e-6 ) . detach ( )
MSELoss ( ) ( out2 , compare ) . backward ( )
assert ( torch . max ( torch . abs ( out1 - out2 ) ) < 1e-5 )
if __name__ == ' __main__ ' :
test_net ( )