2020-12-17 17:16:21 +00:00
# Script that builds and launches a tkinter UI for directly interacting with a pytorch model that performs
# patch-level image classification.
#
# This script is a bit rough around the edges. I threw it together quickly to ascertain its usefulness. If I end up
# using it a lot, I may re-visit it.
import os
import tkinter as tk
import torch
import torchvision
from PIL import ImageTk
from data . image_label_parser import VsNetImageLabeler
from scripts . ui . image_labeler . pretrained_image_patch_classifier import PretrainedImagePatchClassifier
# Globals used to define state that event handlers might operate on.
classifier = None
gen = None
labeler = None
to_pil = torchvision . transforms . ToPILImage ( )
widgets = None
batch_gen = None
cur_img = 0
batch_sz = 0
mode = 0
cur_path , cur_top , cur_left , cur_dim = None , None , None , None
pending_labels = [ ]
def update_mode_label ( ) :
global widgets
image_widget , primary_label , secondary_label , mode_label = widgets
mode_label . config ( text = " Current mode: %s ; Saved images: %i " % ( labeler . str_labels [ mode ] , len ( pending_labels ) ) )
# Handles the "change mode" hotkey. Changes the classification label being targeted.
def change_mode ( event ) :
global mode , pending_labels
2020-12-18 15:53:18 +00:00
mode = ( mode + 1 ) % len ( labeler . str_labels )
2020-12-17 17:16:21 +00:00
update_mode_label ( )
# Handles key presses, which are interpreted as requests to categorize a currently active image patch.
def key_press ( event ) :
global batch_gen , labeler , pending_labels
if event . char != ' \t ' :
if event . char not in labeler . categories . keys ( ) :
print ( " Specified category doesn ' t exist. " )
return
cat = labeler . categories [ event . char ]
img_name = os . path . basename ( cur_path )
print ( cat [ ' label ' ] , img_name , cur_top , cur_left , cur_dim )
pending_labels . append ( [ event . char , img_name , cur_top , cur_left , cur_dim ] )
if not next ( batch_gen ) :
next_image ( None )
update_mode_label ( )
# Pop the most recent label off of the stack.
def undo ( event ) :
global pending_labels
c , nm , t , l , d = pending_labels . pop ( )
print ( " Removed pending label " , c , nm , t , l , d )
update_mode_label ( )
# Save the stack of pending labels to the underlying label file.
def save ( event ) :
global pending_labels , labeler
print ( " Saving %i labels " , len ( pending_labels , ) )
for l in pending_labels :
labeler . add_label ( * l )
labeler . save ( )
pending_labels = [ ]
update_mode_label ( )
# This is the main controller for the state machine that this UI attaches to. At its core, it performs inference on
# a batch of images, then repetitively yields patches of images that fit within a confidence bound for the currently
# active label.
def next_batch ( ) :
global gen , widgets , cur_img , batch_sz , cur_top , cur_left , cur_dim , mode , labeler , cur_path
image_widget , primary_label , secondary_label , mode_label = widgets
hq , res , data = next ( gen )
scale = hq . shape [ - 1 ] / / res . shape [ - 1 ]
# These are the confidence bounds. They apply to a post-softmax output. They are currently fixed.
2020-12-18 15:53:18 +00:00
conf_lower = .4
2020-12-17 17:16:21 +00:00
conf_upper = 1
valid_res = ( ( res > conf_lower ) * ( res < c onf_upper ) ) * 1.0 # This results in a tensor of 0's where tensors are outside of the confidence bound, 1's where inside.
cur_img = 0
batch_sz = hq . shape [ 0 ]
while cur_img < batch_sz : # Note: cur_img can (intentionally) be changed outside of this loop.
# Build a random permutation for every image patch in the image. We will search for patches that fall within the confidence bound and yield them.
2020-12-18 15:53:18 +00:00
permutation = torch . randperm ( res . shape [ - 1 ] * res . shape [ - 2 ] )
for p in permutation :
p = p . item ( )
#for p in range(res.shape[-1]*res.shape[-2]):
2020-12-17 17:16:21 +00:00
# Reconstruct a top & left coordinate.
t = p / / res . shape [ - 1 ]
l = p % res . shape [ - 1 ]
if not valid_res [ cur_img , mode , t , l ] :
continue
# Build a mask that shows the user the underlying construction of the image.
# - Areas that don't fit the current labeling restrictions get a mask value of .25.
# - Areas that do fit but are not the current patch, get a mask value of .5
# - The current patch gets a mask value of 1.0
# Expected output shape is (1,h,w) so it can be multiplied into the output image.
mask = ( valid_res [ cur_img , mode , : , : ] . clone ( ) * .25 + .25 ) . unsqueeze ( 0 )
mask [ : , t , l ] = 1.0
# Interpolate the mask so that it can be directly multiplied against the HQ image.
masked = hq [ cur_img , : , : , : ] . clone ( ) * torch . nn . functional . interpolate ( mask . unsqueeze ( 0 ) , scale_factor = scale , mode = " nearest " ) . squeeze ( 0 )
# Update the image widget to show the new masked image.
tk_picture = ImageTk . PhotoImage ( to_pil ( masked ) )
image_widget . image = tk_picture
image_widget . configure ( image = tk_picture )
# Fill in the labels
probs = res [ cur_img , : , t , l ]
probs , lblis = torch . topk ( probs , k = 2 )
primary_label . config ( text = " %s (p= %f ) " % ( labeler . str_labels [ lblis [ 0 ] . item ( ) ] , probs [ 0 ] ) )
secondary_label . config ( text = " %s (p= %f ) " % ( labeler . str_labels [ lblis [ 1 ] . item ( ) ] , probs [ 1 ] ) )
# Update state variables so that the key handlers can save the current patch as needed.
cur_top , cur_left , cur_dim = ( t * scale ) , ( l * scale ) , scale
cur_path = os . path . basename ( data [ ' HQ_path ' ] [ cur_img ] )
yield True
cur_img + = 1
cur_top , cur_left , cur_dim = None , None , None
return False
def next_image ( event ) :
global batch_gen , batch_sz , cur_img
cur_img + = 1
if cur_img > = batch_sz :
cur_img = 0
batch_gen = next_batch ( )
next ( batch_gen )
if __name__ == ' __main__ ' :
classifier = PretrainedImagePatchClassifier ( ' ../options/train_imgset_structural_classifier.yml ' )
gen = classifier . get_next_sample ( )
labeler = VsNetImageLabeler ( ' F: \\ 4k6k \\ datasets \\ ns_images \\ 512_unsupervised \\ categories_new.json ' )
window = tk . Tk ( )
window . title ( " Image labeler UI " )
window . geometry ( ' 512x620+100+100 ' )
# Photo view.
image_widget = tk . Label ( window )
image_widget . place ( x = 0 , y = 0 , width = 512 , height = 512 )
# Labels
primary_label = tk . Label ( window , text = " xxxx (p=1.0) " , anchor = " w " )
primary_label . place ( x = 20 , y = 510 , width = 400 , height = 20 )
secondary_label = tk . Label ( window , text = " yyyy (p=0.0) " , anchor = " w " )
secondary_label . place ( x = 20 , y = 530 , width = 400 , height = 20 )
help = tk . Label ( window , text = " Next: ctrl+f, Mode: ctrl+x, Undo: ctrl+z, Save: ctrl+s " , anchor = " w " )
help . place ( x = 20 , y = 550 , width = 400 , height = 20 )
help2 = tk . Label ( window , text = ' , ' . join ( list ( labeler . categories . keys ( ) ) ) , anchor = " w " )
help2 . place ( x = 20 , y = 570 , width = 400 , height = 20 )
mode_label = tk . Label ( window , text = " Current mode: %s ; Saved images: %i " % ( labeler . str_labels [ mode ] , 0 ) , anchor = " w " )
mode_label . place ( x = 20 , y = 590 , width = 400 , height = 20 )
widgets = ( image_widget , primary_label , secondary_label , mode_label )
window . bind ( " <Control-x> " , change_mode )
window . bind ( " <Control-z> " , undo )
window . bind ( " <Control-s> " , save )
window . bind ( " <Control-f> " , next_image )
for kb in labeler . categories . keys ( ) :
window . bind ( " %s " % ( kb , ) , key_press )
window . bind ( " <Tab> " , key_press ) # Skip current patch
window . mainloop ( )