2022-06-13 00:09:59 +00:00
import itertools
import torch
import torch . nn as nn
import torch . nn . functional as F
from models . arch_util import ResBlock
from models . audio . music . music_quantizer2 import MusicQuantizer2
from models . diffusion . nn import timestep_embedding , normalization , zero_module , conv_nd , linear
from models . diffusion . unet_diffusion import TimestepBlock
from models . lucidrains . x_transformers import Encoder , Attention , RMSScaleShiftNorm , RotaryEmbedding , \
FeedForward
from trainer . networks import register_model
from utils . util import checkpoint , print_network
def is_latent ( t ) :
return t . dtype == torch . float
def is_sequence ( t ) :
return t . dtype == torch . long
class MultiGroupEmbedding ( nn . Module ) :
def __init__ ( self , tokens , groups , dim ) :
super ( ) . __init__ ( )
self . m = nn . ModuleList ( [ nn . Embedding ( tokens , dim / / groups ) for _ in range ( groups ) ] )
def forward ( self , x ) :
h = [ embedding ( x [ : , : , i ] ) for i , embedding in enumerate ( self . m ) ]
return torch . cat ( h , dim = - 1 )
class TimestepRotaryEmbedSequential ( nn . Sequential , TimestepBlock ) :
def forward ( self , x , emb , rotary_emb ) :
for layer in self :
if isinstance ( layer , TimestepBlock ) :
x = layer ( x , emb , rotary_emb )
else :
x = layer ( x , rotary_emb )
return x
class SubBlock ( nn . Module ) :
def __init__ ( self , inp_dim , contraction_dim , heads , dropout ) :
super ( ) . __init__ ( )
self . attn = Attention ( inp_dim , out_dim = contraction_dim , heads = heads , dim_head = contraction_dim / / heads , causal = False , dropout = dropout )
self . attnorm = nn . LayerNorm ( contraction_dim )
self . ff = nn . Conv1d ( inp_dim + contraction_dim , contraction_dim , kernel_size = 3 , padding = 1 )
self . ffnorm = nn . LayerNorm ( contraction_dim )
def forward ( self , x , rotary_emb ) :
ah , _ , _ , _ = checkpoint ( self . attn , x , None , None , None , None , None , rotary_emb )
ah = F . gelu ( self . attnorm ( ah ) )
h = torch . cat ( [ ah , x ] , dim = - 1 )
hf = checkpoint ( self . ff , h . permute ( 0 , 2 , 1 ) ) . permute ( 0 , 2 , 1 )
hf = F . gelu ( self . ffnorm ( hf ) )
h = torch . cat ( [ h , hf ] , dim = - 1 )
return h
class ConcatAttentionBlock ( TimestepBlock ) :
2022-06-13 14:40:23 +00:00
def __init__ ( self , trunk_dim , contraction_dim , time_embed_dim , heads , dropout ) :
2022-06-13 00:09:59 +00:00
super ( ) . __init__ ( )
2022-06-13 14:40:23 +00:00
self . prenorm = RMSScaleShiftNorm ( trunk_dim , embed_dim = time_embed_dim , bias = False )
2022-06-13 00:09:59 +00:00
self . block1 = SubBlock ( trunk_dim , contraction_dim , heads , dropout )
self . block2 = SubBlock ( trunk_dim + contraction_dim * 2 , contraction_dim , heads , dropout )
self . out = nn . Linear ( contraction_dim * 4 , trunk_dim , bias = False )
self . out . weight . data . zero_ ( )
def forward ( self , x , timestep_emb , rotary_emb ) :
h = self . prenorm ( x , norm_scale_shift_inp = timestep_emb )
h = self . block1 ( h , rotary_emb )
h = self . block2 ( h , rotary_emb )
h = self . out ( h [ : , : , x . shape [ - 1 ] : ] )
return h + x
class TransformerDiffusion ( nn . Module ) :
"""
A diffusion model composed entirely of stacks of transformer layers . Why would you do it any other way ?
"""
def __init__ (
self ,
prenet_channels = 1024 ,
prenet_layers = 3 ,
2022-06-13 14:40:23 +00:00
time_embed_dim = 256 ,
2022-06-13 00:09:59 +00:00
model_channels = 1024 ,
contraction_dim = 256 ,
num_layers = 8 ,
in_channels = 256 ,
rotary_emb_dim = 32 ,
input_vec_dim = 1024 ,
out_channels = 512 , # mean and variance
num_heads = 4 ,
dropout = 0 ,
use_fp16 = False ,
ar_prior = False ,
# Parameters for regularization.
unconditioned_percentage = .1 , # This implements a mechanism similar to what is used in classifier-free training.
) :
super ( ) . __init__ ( )
self . in_channels = in_channels
self . model_channels = model_channels
self . prenet_channels = prenet_channels
2022-06-13 14:40:23 +00:00
self . time_embed_dim = time_embed_dim
2022-06-13 00:09:59 +00:00
self . out_channels = out_channels
self . dropout = dropout
self . unconditioned_percentage = unconditioned_percentage
self . enable_fp16 = use_fp16
self . inp_block = conv_nd ( 1 , in_channels , prenet_channels , 3 , 1 , 1 )
self . time_embed = nn . Sequential (
2022-06-13 14:40:23 +00:00
linear ( time_embed_dim , time_embed_dim ) ,
2022-06-13 00:09:59 +00:00
nn . SiLU ( ) ,
2022-06-13 14:40:23 +00:00
linear ( time_embed_dim , time_embed_dim ) ,
2022-06-13 00:09:59 +00:00
)
self . ar_prior = ar_prior
prenet_heads = prenet_channels / / 64
if ar_prior :
self . ar_input = nn . Linear ( input_vec_dim , prenet_channels )
self . ar_prior_intg = Encoder (
dim = prenet_channels ,
depth = prenet_layers ,
heads = prenet_heads ,
ff_dropout = dropout ,
attn_dropout = dropout ,
use_rmsnorm = True ,
ff_glu = True ,
rotary_pos_emb = True ,
zero_init_branch_output = True ,
ff_mult = 1 ,
)
else :
self . input_converter = nn . Linear ( input_vec_dim , prenet_channels )
self . code_converter = Encoder (
dim = prenet_channels ,
depth = prenet_layers ,
heads = prenet_heads ,
ff_dropout = dropout ,
attn_dropout = dropout ,
use_rmsnorm = True ,
ff_glu = True ,
rotary_pos_emb = True ,
zero_init_branch_output = True ,
ff_mult = 1 ,
)
self . unconditioned_embedding = nn . Parameter ( torch . randn ( 1 , 1 , prenet_channels ) )
self . rotary_embeddings = RotaryEmbedding ( rotary_emb_dim )
self . intg = nn . Linear ( prenet_channels * 2 , model_channels )
2022-06-13 14:40:23 +00:00
self . layers = TimestepRotaryEmbedSequential ( * [ ConcatAttentionBlock ( model_channels , contraction_dim , time_embed_dim , num_heads , dropout ) for _ in range ( num_layers ) ] )
2022-06-13 00:09:59 +00:00
self . out = nn . Sequential (
normalization ( model_channels ) ,
nn . SiLU ( ) ,
zero_module ( conv_nd ( 1 , model_channels , out_channels , 3 , padding = 1 ) ) ,
)
self . debug_codes = { }
def get_grad_norm_parameter_groups ( self ) :
groups = {
' layers ' : list ( self . layers . parameters ( ) ) + list ( self . inp_block . parameters ( ) ) ,
' code_converters ' : list ( self . input_converter . parameters ( ) ) + list ( self . code_converter . parameters ( ) ) ,
' time_embed ' : list ( self . time_embed . parameters ( ) ) ,
}
return groups
def timestep_independent ( self , prior , expected_seq_len ) :
code_emb = self . ar_input ( prior ) if self . ar_prior else self . input_converter ( prior )
code_emb = self . ar_prior_intg ( code_emb ) if self . ar_prior else self . code_converter ( code_emb )
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self . training and self . unconditioned_percentage > 0 :
unconditioned_batches = torch . rand ( ( code_emb . shape [ 0 ] , 1 , 1 ) ,
device = code_emb . device ) < self . unconditioned_percentage
code_emb = torch . where ( unconditioned_batches , self . unconditioned_embedding . repeat ( prior . shape [ 0 ] , 1 , 1 ) ,
code_emb )
expanded_code_emb = F . interpolate ( code_emb . permute ( 0 , 2 , 1 ) , size = expected_seq_len , mode = ' nearest ' ) . permute ( 0 , 2 , 1 )
return expanded_code_emb
def forward ( self , x , timesteps , codes = None , conditioning_input = None , precomputed_code_embeddings = None , conditioning_free = False ) :
if precomputed_code_embeddings is not None :
assert codes is None and conditioning_input is None , " Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here. "
unused_params = [ ]
if conditioning_free :
code_emb = self . unconditioned_embedding . repeat ( x . shape [ 0 ] , x . shape [ - 1 ] , 1 )
else :
if precomputed_code_embeddings is not None :
code_emb = precomputed_code_embeddings
else :
code_emb = self . timestep_independent ( codes , x . shape [ - 1 ] )
unused_params . append ( self . unconditioned_embedding )
with torch . autocast ( x . device . type , enabled = self . enable_fp16 ) :
2022-06-13 14:40:23 +00:00
blk_emb = self . time_embed ( timestep_embedding ( timesteps , self . time_embed_dim ) )
2022-06-13 00:09:59 +00:00
x = self . inp_block ( x ) . permute ( 0 , 2 , 1 )
rotary_pos_emb = self . rotary_embeddings ( x . shape [ 1 ] , x . device )
x = self . intg ( torch . cat ( [ x , code_emb ] , dim = - 1 ) )
for layer in self . layers :
x = checkpoint ( layer , x , blk_emb , rotary_pos_emb )
x = x . float ( ) . permute ( 0 , 2 , 1 )
out = self . out ( x )
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params :
extraneous_addition = extraneous_addition + p . mean ( )
out = out + extraneous_addition * 0
return out
class TransformerDiffusionWithQuantizer ( nn . Module ) :
def __init__ ( self , quantizer_dims = [ 1024 ] , quantizer_codebook_size = 256 , quantizer_codebook_groups = 2 ,
freeze_quantizer_until = 20000 , * * kwargs ) :
super ( ) . __init__ ( )
self . internal_step = 0
self . freeze_quantizer_until = freeze_quantizer_until
self . diff = TransformerDiffusion ( * * kwargs )
self . quantizer = MusicQuantizer2 ( inp_channels = kwargs [ ' in_channels ' ] , inner_dim = quantizer_dims ,
codevector_dim = quantizer_dims [ 0 ] , codebook_size = quantizer_codebook_size ,
codebook_groups = quantizer_codebook_groups , max_gumbel_temperature = 4 ,
min_gumbel_temperature = .5 )
self . quantizer . quantizer . temperature = self . quantizer . min_gumbel_temperature
del self . quantizer . up
def update_for_step ( self , step , * args ) :
self . internal_step = step
qstep = max ( 0 , self . internal_step - self . freeze_quantizer_until )
self . quantizer . quantizer . temperature = max (
self . quantizer . max_gumbel_temperature * self . quantizer . gumbel_temperature_decay * * qstep ,
self . quantizer . min_gumbel_temperature ,
)
def forward ( self , x , timesteps , truth_mel , conditioning_input = None , disable_diversity = False , conditioning_free = False ) :
quant_grad_enabled = self . internal_step > self . freeze_quantizer_until
with torch . set_grad_enabled ( quant_grad_enabled ) :
proj , diversity_loss = self . quantizer ( truth_mel , return_decoder_latent = True )
proj = proj . permute ( 0 , 2 , 1 )
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
if not quant_grad_enabled :
unused = 0
for p in self . quantizer . parameters ( ) :
unused = unused + p . mean ( ) * 0
proj = proj + unused
diversity_loss = diversity_loss * 0
diff = self . diff ( x , timesteps , codes = proj , conditioning_input = conditioning_input , conditioning_free = conditioning_free )
if disable_diversity :
return diff
return diff , diversity_loss
def get_debug_values ( self , step , __ ) :
if self . quantizer . total_codes > 0 :
return { ' histogram_quant_codes ' : self . quantizer . codes [ : self . quantizer . total_codes ] ,
' gumbel_temperature ' : self . quantizer . quantizer . temperature }
else :
return { }
def get_grad_norm_parameter_groups ( self ) :
attn1 = list ( itertools . chain . from_iterable ( [ lyr . block1 . attn . parameters ( ) for lyr in self . diff . layers ] ) )
attn2 = list ( itertools . chain . from_iterable ( [ lyr . block2 . attn . parameters ( ) for lyr in self . diff . layers ] ) )
ff1 = list ( itertools . chain . from_iterable ( [ lyr . block1 . ff . parameters ( ) for lyr in self . diff . layers ] ) )
ff2 = list ( itertools . chain . from_iterable ( [ lyr . block2 . ff . parameters ( ) for lyr in self . diff . layers ] ) )
blkout_layers = list ( itertools . chain . from_iterable ( [ lyr . out . parameters ( ) for lyr in self . diff . layers ] ) )
groups = {
2022-06-13 14:40:23 +00:00
' prenorms ' : list ( itertools . chain . from_iterable ( [ lyr . prenorm . parameters ( ) for lyr in self . diff . layers ] ) ) ,
2022-06-13 00:09:59 +00:00
' blk1_attention_layers ' : attn1 ,
' blk2_attention_layers ' : attn2 ,
' attention_layers ' : attn1 + attn2 ,
' blk1_ff_layers ' : ff1 ,
' blk2_ff_layers ' : ff2 ,
' ff_layers ' : ff1 + ff2 ,
' block_out_layers ' : blkout_layers ,
' quantizer_encoder ' : list ( self . quantizer . encoder . parameters ( ) ) ,
' quant_codebook ' : [ self . quantizer . quantizer . codevectors ] ,
' rotary_embeddings ' : list ( self . diff . rotary_embeddings . parameters ( ) ) ,
' out ' : list ( self . diff . out . parameters ( ) ) ,
' x_proj ' : list ( self . diff . inp_block . parameters ( ) ) ,
' layers ' : list ( self . diff . layers . parameters ( ) ) ,
' code_converters ' : list ( self . diff . input_converter . parameters ( ) ) + list ( self . diff . code_converter . parameters ( ) ) ,
' time_embed ' : list ( self . diff . time_embed . parameters ( ) ) ,
}
return groups
2022-06-13 14:40:23 +00:00
def before_step ( self , step ) :
scaled_grad_parameters = list ( itertools . chain . from_iterable ( [ lyr . out . parameters ( ) for lyr in self . diff . layers ] ) ) + \
list ( itertools . chain . from_iterable ( [ lyr . prenorm . parameters ( ) for lyr in self . diff . layers ] ) )
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
# directly fiddling with the gradients.
for p in scaled_grad_parameters :
p . grad * = .2
2022-06-13 00:09:59 +00:00
class TransformerDiffusionWithARPrior ( nn . Module ) :
def __init__ ( self , freeze_diff = False , * * kwargs ) :
super ( ) . __init__ ( )
self . internal_step = 0
from models . audio . music . gpt_music import GptMusicLower
self . ar = GptMusicLower ( dim = 512 , layers = 12 )
for p in self . ar . parameters ( ) :
p . DO_NOT_TRAIN = True
p . requires_grad = False
self . diff = TransformerDiffusion ( ar_prior = True , * * kwargs )
if freeze_diff :
for p in self . diff . parameters ( ) :
p . DO_NOT_TRAIN = True
p . requires_grad = False
for p in list ( self . diff . ar_prior_intg . parameters ( ) ) + list ( self . diff . ar_input . parameters ( ) ) :
del p . DO_NOT_TRAIN
p . requires_grad = True
def get_grad_norm_parameter_groups ( self ) :
groups = {
' attention_layers ' : list ( itertools . chain . from_iterable ( [ lyr . attn . parameters ( ) for lyr in self . diff . layers ] ) ) ,
' ff_layers ' : list ( itertools . chain . from_iterable ( [ lyr . ff . parameters ( ) for lyr in self . diff . layers ] ) ) ,
' rotary_embeddings ' : list ( self . diff . rotary_embeddings . parameters ( ) ) ,
' out ' : list ( self . diff . out . parameters ( ) ) ,
' x_proj ' : list ( self . diff . inp_block . parameters ( ) ) ,
' layers ' : list ( self . diff . layers . parameters ( ) ) ,
' ar_prior_intg ' : list ( self . diff . ar_prior_intg . parameters ( ) ) ,
' time_embed ' : list ( self . diff . time_embed . parameters ( ) ) ,
}
return groups
def forward ( self , x , timesteps , truth_mel , disable_diversity = False , conditioning_input = None , conditioning_free = False ) :
with torch . no_grad ( ) :
prior = self . ar ( truth_mel , conditioning_input , return_latent = True )
diff = self . diff ( x , timesteps , prior , conditioning_free = conditioning_free )
return diff
@register_model
def register_transformer_diffusion12 ( opt_net , opt ) :
return TransformerDiffusion ( * * opt_net [ ' kwargs ' ] )
@register_model
def register_transformer_diffusion12_with_quantizer ( opt_net , opt ) :
return TransformerDiffusionWithQuantizer ( * * opt_net [ ' kwargs ' ] )
@register_model
def register_transformer_diffusion12_with_ar_prior ( opt_net , opt ) :
return TransformerDiffusionWithARPrior ( * * opt_net [ ' kwargs ' ] )
def test_quant_model ( ) :
clip = torch . randn ( 2 , 256 , 400 )
ts = torch . LongTensor ( [ 600 , 600 ] )
# For music:
2022-06-13 14:40:23 +00:00
model = TransformerDiffusionWithQuantizer ( in_channels = 256 , model_channels = 1536 , contraction_dim = 768 ,
prenet_channels = 1024 , num_heads = 10 ,
2022-06-13 00:09:59 +00:00
input_vec_dim = 1024 , num_layers = 24 , prenet_layers = 4 ,
dropout = .1 )
quant_weights = torch . load ( ' D: \\ dlas \\ experiments \\ train_music_quant_r4 \\ models \\ 5000_generator.pth ' )
model . quantizer . load_state_dict ( quant_weights , strict = False )
torch . save ( model . state_dict ( ) , ' sample.pth ' )
print_network ( model )
o = model ( clip , ts , clip )
2022-06-13 14:40:23 +00:00
pg = model . get_grad_norm_parameter_groups ( )
t = 0
for k , vs in pg . items ( ) :
s = 0
for v in vs :
m = 1
for d in v . shape :
m * = d
s + = m
t + = s
print ( k , s / 1000000 )
print ( t )
2022-06-13 00:09:59 +00:00
def test_ar_model ( ) :
clip = torch . randn ( 2 , 256 , 400 )
cond = torch . randn ( 2 , 256 , 400 )
ts = torch . LongTensor ( [ 600 , 600 ] )
model = TransformerDiffusionWithARPrior ( model_channels = 2048 , prenet_channels = 1536 ,
input_vec_dim = 512 , num_layers = 16 , prenet_layers = 6 , freeze_diff = True ,
unconditioned_percentage = .4 )
model . get_grad_norm_parameter_groups ( )
ar_weights = torch . load ( ' D: \\ dlas \\ experiments \\ train_music_gpt \\ models \\ 44500_generator_ema.pth ' )
model . ar . load_state_dict ( ar_weights , strict = True )
diff_weights = torch . load ( ' X: \\ dlas \\ experiments \\ train_music_diffusion_tfd8 \\ models \\ 47500_generator_ema.pth ' )
pruned_diff_weights = { }
for k , v in diff_weights . items ( ) :
if k . startswith ( ' diff. ' ) :
pruned_diff_weights [ k . replace ( ' diff. ' , ' ' ) ] = v
model . diff . load_state_dict ( pruned_diff_weights , strict = False )
torch . save ( model . state_dict ( ) , ' sample.pth ' )
model ( clip , ts , cond , conditioning_input = cond )
if __name__ == ' __main__ ' :
test_quant_model ( )