DL-Art-School/codes/data/audio/gpt_tts_dataset.py

112 lines
4.0 KiB
Python
Raw Normal View History

import os
2021-08-05 02:07:45 +00:00
import torch
2021-08-05 02:07:45 +00:00
import torch.nn.functional as F
import torch.utils.data
from torch import LongTensor
from tqdm import tqdm
from models.audio.tts.tacotron2 import load_filepaths_and_text
from models.audio.tts.tacotron2 import symbols
from models.audio.tts.tacotron2 import text_to_sequence
class GptTtsDataset(torch.utils.data.Dataset):
2021-08-05 02:07:45 +00:00
MAX_SYMBOLS_PER_PHRASE = 200
NUMBER_SYMBOLS = len(symbols)
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS + MAX_SYMBOLS_PER_PHRASE + 2
TEXT_START_TOKEN = LongTensor([NUMBER_TEXT_TOKENS-1])
TEXT_STOP_TOKEN = LongTensor([NUMBER_TEXT_TOKENS-2])
def __init__(self, opt):
self.path = os.path.dirname(opt['path'])
self.audiopaths_and_text = load_filepaths_and_text(opt['path'])
self.text_cleaners=['english_cleaners']
self.MEL_DICTIONARY_SIZE = opt['mel_vocab_size']+3
self.MEL_START_TOKEN = LongTensor([self.MEL_DICTIONARY_SIZE-3])
self.MEL_STOP_TOKEN = LongTensor([self.MEL_DICTIONARY_SIZE-2])
def __getitem__(self, index):
# Fetch text and add start/stop tokens.
audiopath_and_text = self.audiopaths_and_text[index]
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
text = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
text = torch.cat([self.TEXT_START_TOKEN, text, self.TEXT_STOP_TOKEN], dim=0)
# Fetch quantized MELs
quant_path = audiopath.replace('wavs/', 'quantized_mels/') + '.pth'
filename = os.path.join(self.path, quant_path)
qmel = torch.load(filename)
qmel = torch.cat([self.MEL_START_TOKEN, qmel, self.MEL_STOP_TOKEN])
return text, qmel, audiopath
def __len__(self):
return len(self.audiopaths_and_text)
class GptTtsCollater():
2021-08-05 02:07:45 +00:00
MAX_SYMBOLS_PER_PHRASE = 200
NUMBER_SYMBOLS = len(symbols)
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS + MAX_SYMBOLS_PER_PHRASE + 2
def __init__(self, opt):
self.MEL_DICTIONARY_SIZE = opt['mel_vocab_size']+3
self.MEL_PAD_TOKEN = self.MEL_DICTIONARY_SIZE-1
def __call__(self, batch):
text_lens = [len(x[0]) for x in batch]
#max_text_len = max(text_lens)
max_text_len = self.MAX_SYMBOLS_PER_PHRASE # This forces all outputs to have the full 200 characters. Testing if this makes a difference.
mel_lens = [len(x[1]) for x in batch]
max_mel_len = max(mel_lens)
texts = []
qmels = []
2021-08-05 02:07:45 +00:00
# This is the sequential "background" tokens that are used as padding for text tokens, as specified in the DALLE paper.
text_range_embedding = torch.arange(max_text_len) + self.NUMBER_SYMBOLS
for b in batch:
text, qmel, _ = b
2021-08-05 02:07:45 +00:00
text = F.pad(text, (0, max_text_len-len(text)), value=0)
text = torch.where(text == 0, text_range_embedding, text)
texts.append(text)
qmels.append(F.pad(qmel, (0, max_mel_len-len(qmel)), value=self.MEL_PAD_TOKEN))
filenames = [j[2] for j in batch]
2021-08-05 12:46:30 +00:00
padded_qmel_gt = torch.stack(qmels)[:, 1:-1]
padded_qmel_gt = padded_qmel_gt * (padded_qmel_gt < 512)
return {
'padded_text': torch.stack(texts),
'input_lengths': LongTensor(text_lens),
'padded_qmel': torch.stack(qmels),
2021-08-05 12:46:30 +00:00
'padded_qmel_gt': padded_qmel_gt,
'output_lengths': LongTensor(mel_lens),
'filenames': filenames
}
if __name__ == '__main__':
params = {
'mode': 'gpt_tts',
'path': 'E:\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt',
'phase': 'train',
'n_workers': 0,
'batch_size': 16,
'mel_vocab_size': 512,
}
from data import create_dataset, create_dataloader
ds, c = create_dataset(params, return_collate=True)
dl = create_dataloader(ds, params, collate_fn=c)
i = 0
m = []
max_text = 0
max_mel = 0
for b in tqdm(dl):
max_mel = max(max_mel, b['padded_qmel'].shape[2])
max_text = max(max_text, b['padded_text'].shape[1])
m=torch.stack(m)
print(m.mean(), m.std())