2021-08-19 00:29:38 +00:00
|
|
|
import pathlib
|
|
|
|
|
2021-08-17 15:09:11 +00:00
|
|
|
import numpy
|
|
|
|
import torch
|
|
|
|
from scipy.io import wavfile
|
2021-08-19 00:29:38 +00:00
|
|
|
from tqdm import tqdm
|
2021-11-22 23:40:19 +00:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import librosa
|
2021-08-17 15:09:11 +00:00
|
|
|
|
|
|
|
from models.waveglow.waveglow import WaveGlow
|
|
|
|
|
|
|
|
|
|
|
|
class Vocoder:
|
|
|
|
def __init__(self):
|
|
|
|
self.model = WaveGlow(n_mel_channels=80, n_flows=12, n_group=8, n_early_size=2, n_early_every=4, WN_config={'n_layers': 8, 'n_channels': 256, 'kernel_size': 3})
|
|
|
|
sd = torch.load('../experiments/waveglow_256channels_universal_v5.pth')
|
|
|
|
self.model.load_state_dict(sd)
|
|
|
|
self.model = self.model.to('cuda')
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
def transform_mel_to_audio(self, mel):
|
|
|
|
if len(mel.shape) == 2: # Assume it's missing the batch dimension and fix that.
|
|
|
|
mel = mel.unsqueeze(0)
|
|
|
|
with torch.no_grad():
|
|
|
|
return self.model.infer(mel)
|
|
|
|
|
|
|
|
|
2021-11-22 23:40:19 +00:00
|
|
|
def plot_spectrogram(spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None):
|
|
|
|
fig, axs = plt.subplots(1, 1)
|
|
|
|
axs.set_title(title or "Spectrogram (db)")
|
|
|
|
axs.set_ylabel(ylabel)
|
|
|
|
axs.set_xlabel("frame")
|
|
|
|
im = axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect)
|
|
|
|
if xmax:
|
|
|
|
axs.set_xlim((0, xmax))
|
|
|
|
fig.colorbar(im, ax=axs)
|
|
|
|
plt.show(block=False)
|
|
|
|
|
|
|
|
|
2021-08-17 15:09:11 +00:00
|
|
|
if __name__ == '__main__':
|
2021-11-22 23:40:19 +00:00
|
|
|
vocoder = Vocoder()
|
|
|
|
m = torch.load('test_mels.pth')
|
|
|
|
for i, b in enumerate(m):
|
|
|
|
plot_spectrogram(b.cpu())
|
|
|
|
wav = vocoder.transform_mel_to_audio(b)
|
|
|
|
wavfile.write(f'{i}.wav', 22050, wav[0].cpu().numpy())
|