108 lines
3.8 KiB
Python
108 lines
3.8 KiB
Python
|
from functools import partial
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
import torch.nn.functional as F
|
||
|
from torch.nn.utils.rnn import pad_sequence
|
||
|
|
||
|
def exists(val):
|
||
|
return val is not None
|
||
|
|
||
|
def top_p(logits, thres = 0.9):
|
||
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||
|
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||
|
|
||
|
sorted_indices_to_remove = cum_probs > (1 - thres)
|
||
|
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
|
||
|
sorted_indices_to_remove[:, 0] = 0
|
||
|
|
||
|
sorted_logits[sorted_indices_to_remove] = float('-inf')
|
||
|
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
|
||
|
|
||
|
def top_k(logits, thres = 0.9):
|
||
|
k = int((1 - thres) * logits.shape[-1])
|
||
|
val, ind = torch.topk(logits, k)
|
||
|
probs = torch.full_like(logits, float('-inf'))
|
||
|
probs.scatter_(1, ind, val)
|
||
|
return probs
|
||
|
|
||
|
def repetition_penalty_fn(logits, ctx, theta=1.2):
|
||
|
w = torch.ones(logits.shape[-1], dtype=torch.float, device=logits.device)
|
||
|
for i in torch.unique(ctx):
|
||
|
w[i] = theta
|
||
|
return logits/w
|
||
|
|
||
|
class AutoregressiveWrapper(nn.Module):
|
||
|
def __init__(self, net, ignore_index = 0, pad_value = 0):
|
||
|
super().__init__()
|
||
|
self.pad_value = pad_value
|
||
|
self.ignore_index = ignore_index
|
||
|
|
||
|
self.net = net
|
||
|
self.max_seq_len = net.max_seq_len
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, repetition_penalty=1.0, repetition_penalty_ctx=32, **kwargs):
|
||
|
was_training = self.net.training
|
||
|
num_dims = len(start_tokens.shape)
|
||
|
|
||
|
if num_dims == 1:
|
||
|
start_tokens = start_tokens[None, :]
|
||
|
|
||
|
b, t = start_tokens.shape
|
||
|
|
||
|
self.net.eval()
|
||
|
out = start_tokens
|
||
|
input_mask = kwargs.pop('mask', None)
|
||
|
|
||
|
if input_mask is None:
|
||
|
input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device)
|
||
|
|
||
|
# in case of conditional generation, if enc_mask is not provided use the correct context_mask
|
||
|
context_mask = kwargs.pop('context_mask', None)
|
||
|
|
||
|
if 'context' in kwargs and not exists(context_mask):
|
||
|
context = kwargs['context']
|
||
|
context_mask = torch.full(context.shape[:2], True, dtype=torch.bool, device=out.device)
|
||
|
|
||
|
kwargs.update(context_mask = context_mask)
|
||
|
|
||
|
for _ in range(seq_len):
|
||
|
x = out[:, -self.max_seq_len:]
|
||
|
input_mask = input_mask[:, -self.max_seq_len:]
|
||
|
logits = self.net(x, mask=input_mask, **kwargs)[:, -1, :]
|
||
|
if repetition_penalty > 1.0:
|
||
|
logits = repetition_penalty_fn(logits, out[-repetition_penalty_ctx:], theta=repetition_penalty)
|
||
|
filtered_logits = filter_logits_fn(logits, thres = filter_thres)
|
||
|
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
||
|
sample = torch.multinomial(probs, 1)
|
||
|
|
||
|
out = torch.cat((out, sample), dim=-1)
|
||
|
input_mask = F.pad(input_mask, (0, 1), value=True)
|
||
|
|
||
|
if eos_token is not None and (sample == eos_token).all():
|
||
|
break
|
||
|
|
||
|
out = out[:, t:]
|
||
|
|
||
|
if num_dims == 1:
|
||
|
out = out.squeeze(0)
|
||
|
|
||
|
self.net.train(was_training)
|
||
|
return out
|
||
|
|
||
|
def forward(self, x, **kwargs):
|
||
|
xi = x[:, :-1]
|
||
|
xo = x[:, 1:]
|
||
|
|
||
|
# help auto-solve an area of confusion around input masks in auto-regressive
|
||
|
# if user supplies a mask that is only off by one from the source sequence, resolve it for them
|
||
|
mask = kwargs.pop('mask', None)
|
||
|
if mask is not None and mask.shape[1] == x.shape[1]:
|
||
|
mask = mask[:, :-1]
|
||
|
kwargs.update(mask = mask)
|
||
|
|
||
|
out = self.net(xi, **kwargs)
|
||
|
|
||
|
loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index)
|
||
|
return loss
|