2022-01-10 05:32:34 +00:00
import functools
import torch
import torch . nn as nn
import torch . nn . functional as F
from transformers import GPT2Model , GPT2Config
from models . arch_util import AttentionBlock
from models . gpt_voice . gpt_asr_hf import GPT2InferenceModel
from models . gpt_voice . gpt_asr_hf2 import ResBlock
from models . gpt_voice . transformer_builders import build_hf_gpt_transformer
from models . tacotron2 . text import symbols
from trainer . networks import register_model
from utils . util import opt_get
class ConditioningEncoder ( nn . Module ) :
def __init__ ( self ,
spec_dim ,
embedding_dim ,
attn_blocks = 6 ,
num_attn_heads = 4 ,
do_checkpointing = False ) :
super ( ) . __init__ ( )
attn = [ ]
self . init = nn . Conv1d ( spec_dim , embedding_dim , kernel_size = 1 )
for a in range ( attn_blocks ) :
attn . append ( AttentionBlock ( embedding_dim , num_attn_heads , do_checkpoint = do_checkpointing ) )
self . attn = nn . Sequential ( * attn )
self . dim = embedding_dim
self . do_checkpointing = do_checkpointing
def forward ( self , x ) :
h = self . init ( x )
h = self . attn ( h )
return h [ : , : , 0 ]
class MelEncoder ( nn . Module ) :
def __init__ ( self , channels , mel_channels = 80 , resblocks_per_reduction = 2 ) :
super ( ) . __init__ ( )
self . channels = channels
self . encoder = nn . Sequential ( nn . Conv1d ( mel_channels , channels / / 4 , kernel_size = 3 , padding = 1 ) ,
nn . Sequential ( * [ ResBlock ( channels / / 4 ) for _ in range ( resblocks_per_reduction ) ] ) ,
nn . Conv1d ( channels / / 4 , channels / / 2 , kernel_size = 3 , stride = 2 , padding = 1 ) ,
nn . GroupNorm ( channels / / 16 , channels / / 2 ) ,
nn . ReLU ( ) ,
nn . Sequential ( * [ ResBlock ( channels / / 2 ) for _ in range ( resblocks_per_reduction ) ] ) ,
nn . Conv1d ( channels / / 2 , channels , kernel_size = 3 , stride = 2 , padding = 1 ) ,
nn . GroupNorm ( channels / / 8 , channels ) ,
nn . ReLU ( ) ,
nn . Sequential ( * [ ResBlock ( channels ) for _ in range ( resblocks_per_reduction ) ] ) ,
)
self . reduction = 4
def forward ( self , x ) :
for e in self . encoder :
x = e ( x )
return x . permute ( 0 , 2 , 1 )
class UnifiedVoice ( nn . Module ) :
def __init__ ( self , layers = 8 , model_dim = 512 , heads = 8 , max_text_tokens = 120 , max_mel_tokens = 250 , max_conditioning_inputs = 1 ,
2022-01-10 23:17:31 +00:00
mel_length_compression = 1024 , number_text_tokens = 256 ,
2022-01-10 05:32:34 +00:00
start_text_token = 255 , stop_text_token = 0 , number_mel_codes = 8194 , start_mel_token = 8192 ,
stop_mel_token = 8193 , train_solo_embeddings = False , use_mel_codes_as_input = True ,
checkpointing = True ) :
"""
Args :
layers : Number of layers in transformer stack .
model_dim : Operating dimensions of the transformer
heads : Number of transformer heads . Must be divisible by model_dim . Recommend model_dim / / 64
max_text_tokens : Maximum number of text tokens that will be encountered by model .
max_mel_tokens : Maximum number of MEL tokens that will be encountered by model .
max_conditioning_inputs : Maximum number of conditioning inputs provided to the model . If ( 1 ) , conditioning input can be of format ( b , 80 , s ) , otherwise ( b , n , 80 , s ) .
mel_length_compression : The factor between < number_input_samples > and < mel_tokens > . Used to compute MEL code padding given wav input length .
number_text_tokens :
start_text_token :
stop_text_token :
number_mel_codes :
start_mel_token :
stop_mel_token :
train_solo_embeddings :
use_mel_codes_as_input :
checkpointing :
"""
super ( ) . __init__ ( )
self . number_text_tokens = number_text_tokens
self . start_text_token = start_text_token
self . stop_text_token = stop_text_token
self . number_mel_codes = number_mel_codes
self . start_mel_token = start_mel_token
self . stop_mel_token = stop_mel_token
self . layers = layers
self . heads = heads
self . max_mel_tokens = max_mel_tokens
self . max_text_tokens = max_text_tokens
self . model_dim = model_dim
self . max_conditioning_inputs = max_conditioning_inputs
self . mel_length_compression = mel_length_compression
self . conditioning_encoder = ConditioningEncoder ( 80 , model_dim , num_attn_heads = heads )
self . text_embedding = nn . Embedding ( self . number_text_tokens , model_dim )
if use_mel_codes_as_input :
self . mel_embedding = nn . Embedding ( self . number_mel_codes , model_dim )
else :
self . mel_embedding = MelEncoder ( model_dim , resblocks_per_reduction = 1 )
2022-01-10 15:14:41 +00:00
self . gpt , self . mel_pos_embedding , self . text_pos_embedding , self . mel_layer_pos_embedding , self . text_layer_pos_embedding = \
2022-01-10 23:17:31 +00:00
build_hf_gpt_transformer ( layers , model_dim , heads , self . max_mel_tokens + 2 + self . max_conditioning_inputs , self . max_text_tokens + 2 , checkpointing )
2022-01-10 05:32:34 +00:00
if train_solo_embeddings :
self . mel_solo_embedding = nn . Parameter ( torch . randn ( 1 , 1 , model_dim ) * .02 , requires_grad = True )
self . text_solo_embedding = nn . Parameter ( torch . randn ( 1 , 1 , model_dim ) * .02 , requires_grad = True )
else :
self . mel_solo_embedding = 0
self . text_solo_embedding = 0
self . final_norm = nn . LayerNorm ( model_dim )
self . text_head = nn . Linear ( model_dim , self . number_text_tokens )
self . mel_head = nn . Linear ( model_dim , self . number_mel_codes )
# Initialize the embeddings per the GPT-2 scheme
2022-01-10 15:14:41 +00:00
embeddings = [ self . text_embedding ]
2022-01-10 05:32:34 +00:00
if use_mel_codes_as_input :
embeddings . append ( self . mel_embedding )
2022-01-10 15:14:41 +00:00
for module in embeddings :
2022-01-10 05:32:34 +00:00
module . weight . data . normal_ ( mean = 0.0 , std = .02 )
def build_aligned_inputs_and_targets ( self , input , start_token , stop_token ) :
inp = F . pad ( input , ( 1 , 0 ) , value = start_token )
tar = F . pad ( input , ( 0 , 1 ) , value = stop_token )
return inp , tar
def set_mel_padding ( self , mel_input_tokens , wav_lengths ) :
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip , reformats the tokens with STOP_MEL_TOKEN in place of the zero padding . This is required
preformatting to create a working TTS model .
"""
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
mel_lengths = wav_lengths / / self . mel_length_compression
for b in range ( len ( mel_lengths ) ) :
actual_end = mel_lengths [ b ] + 1 # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
if actual_end < mel_input_tokens . shape [ - 1 ] :
mel_input_tokens [ b , actual_end : ] = self . stop_mel_token
return mel_input_tokens
2022-01-10 23:17:31 +00:00
def get_logits ( self , speech_conditioning_inputs , first_inputs , first_head , second_inputs = None , second_head = None , get_attns = False ) :
2022-01-10 05:32:34 +00:00
if second_inputs is not None :
2022-01-10 23:17:31 +00:00
emb = torch . cat ( [ speech_conditioning_inputs , first_inputs , second_inputs ] , dim = 1 )
2022-01-10 05:32:34 +00:00
else :
2022-01-10 23:17:31 +00:00
emb = torch . cat ( [ speech_conditioning_inputs , first_inputs ] , dim = 1 )
2022-01-10 05:32:34 +00:00
gpt_out = self . gpt ( inputs_embeds = emb , return_dict = True , output_attentions = get_attns )
if get_attns :
return gpt_out . attentions
enc = gpt_out . last_hidden_state [ : , 1 : ] # The first logit is tied to the speech_conditioning_input
enc = self . final_norm ( enc )
first_logits = enc [ : , : first_inputs . shape [ 1 ] ]
first_logits = first_head ( first_logits )
first_logits = first_logits . permute ( 0 , 2 , 1 )
if second_inputs is not None :
second_logits = enc [ : , - second_inputs . shape [ 1 ] : ]
second_logits = second_head ( second_logits )
second_logits = second_logits . permute ( 0 , 2 , 1 )
return first_logits , second_logits
else :
return first_logits
def forward ( self , speech_conditioning_input , text_inputs , text_lengths , mel_codes , wav_lengths , text_first = True , raw_mels = None , return_attentions = False ) :
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
( actuated by ` text_first ` ) .
speech_conditioning_input : MEL float tensor , ( b , 80 , s )
text_inputs : long tensor , ( b , t )
text_lengths : long tensor , ( b , )
mel_inputs : long tensor , ( b , m )
wav_lengths : long tensor , ( b , )
raw_mels : MEL float tensor ( b , 80 , s )
"""
assert self . max_mel_tokens > = mel_codes . shape [ 1 ] , f ' { mel_codes . shape [ 1 ] } '
assert self . max_text_tokens > = text_inputs . shape [ 1 ] , f ' { text_inputs . shape [ 1 ] } '
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths . max ( )
text_inputs = F . pad ( text_inputs [ : , : max_text_len ] , ( 0 , 1 ) , value = self . stop_text_token )
max_mel_len = wav_lengths . max ( ) / / self . mel_length_compression
mel_codes = F . pad ( mel_codes [ : , : max_mel_len ] , ( 0 , 1 ) , value = self . stop_mel_token )
if raw_mels is not None :
raw_mels = raw_mels [ : , : , : max_mel_len * 4 ]
mel_codes = self . set_mel_padding ( mel_codes , wav_lengths )
2022-01-10 23:17:31 +00:00
speech_conditioning_input = speech_conditioning_input . unsqueeze ( 1 ) if len ( speech_conditioning_input . shape ) == 3 else speech_conditioning_input
conds = [ ]
for j in range ( speech_conditioning_input . shape [ 1 ] ) :
conds . append ( self . conditioning_encoder ( speech_conditioning_input [ : , j ] ) )
conds = torch . stack ( conds , dim = 1 )
2022-01-10 05:32:34 +00:00
text_inputs , text_targets = self . build_aligned_inputs_and_targets ( text_inputs , self . start_text_token , self . stop_text_token )
2022-01-10 15:14:41 +00:00
text_emb = self . text_embedding ( text_inputs ) + self . text_pos_embedding ( text_inputs )
2022-01-10 05:32:34 +00:00
mel_codes , mel_targets = self . build_aligned_inputs_and_targets ( mel_codes , self . start_mel_token , self . stop_mel_token )
if raw_mels is not None :
mel_inp = F . pad ( raw_mels , ( 0 , 8 ) )
else :
mel_inp = mel_codes
mel_emb = self . mel_embedding ( mel_inp )
2022-01-10 15:14:41 +00:00
mel_emb = mel_emb + self . mel_pos_embedding ( mel_codes )
2022-01-10 05:32:34 +00:00
if text_first :
2022-01-10 23:17:31 +00:00
text_logits , mel_logits = self . get_logits ( conds , text_emb , self . text_head , mel_emb , self . mel_head , get_attns = return_attentions )
2022-01-10 05:32:34 +00:00
else :
2022-01-10 23:17:31 +00:00
mel_logits , text_logits = self . get_logits ( conds , mel_emb , self . mel_head , text_emb , self . text_head , get_attns = return_attentions )
2022-01-10 05:32:34 +00:00
if return_attentions :
return mel_logits
loss_text = F . cross_entropy ( text_logits , text_targets . long ( ) )
loss_mel = F . cross_entropy ( mel_logits , mel_targets . long ( ) )
return loss_text . mean ( ) , loss_mel . mean ( ) , mel_logits
def text_forward ( self , speech_conditioning_input , text_inputs , text_lengths ) :
"""
Performs autoregressive modeling on only text . Still requires a speech_conditioning_input due to the way the
model inputs are formatted . Just provide any audio clip ( arguably , zeros could be provided ) .
"""
assert self . max_text_tokens > = text_inputs . shape [ 1 ] , f ' { text_inputs . shape [ 1 ] } '
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths . max ( )
text_inputs = F . pad ( text_inputs [ : , : max_text_len ] , ( 0 , 1 ) , value = self . stop_text_token )
2022-01-10 23:17:31 +00:00
speech_conditioning_input = speech_conditioning_input . unsqueeze ( 1 ) if len ( speech_conditioning_input . shape ) == 3 else speech_conditioning_input
conds = [ ]
for j in range ( speech_conditioning_input . shape [ 1 ] ) :
conds . append ( self . conditioning_encoder ( speech_conditioning_input [ : , j ] ) )
conds = torch . stack ( conds , dim = 1 )
2022-01-10 05:32:34 +00:00
text_inputs , text_targets = self . build_aligned_inputs_and_targets ( text_inputs , self . start_text_token , self . stop_text_token )
2022-01-10 15:14:41 +00:00
text_emb = self . text_embedding ( text_inputs ) + self . text_pos_embedding ( text_inputs ) + self . text_solo_embedding
2022-01-10 23:17:31 +00:00
text_logits = self . get_logits ( conds , text_emb , self . text_head )
2022-01-10 05:32:34 +00:00
loss_text = F . cross_entropy ( text_logits , text_targets . long ( ) )
return loss_text . mean ( )
def speech_forward ( self , speech_conditioning_input , mel_codes , wav_lengths , raw_mels = None ) :
"""
Performs autoregressive modeling on only speech data .
"""
assert self . max_mel_tokens > = mel_codes . shape [ 1 ] , f ' { mel_codes . shape [ 1 ] } '
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_mel_len = wav_lengths . max ( ) / / self . mel_length_compression
mel_codes = F . pad ( mel_codes [ : , : max_mel_len ] , ( 0 , 1 ) , value = self . stop_mel_token )
mel_codes = self . set_mel_padding ( mel_codes , wav_lengths )
if raw_mels is not None :
raw_mels = raw_mels [ : , : , : max_mel_len * 4 ]
2022-01-10 23:17:31 +00:00
speech_conditioning_input = speech_conditioning_input . unsqueeze ( 1 ) if len ( speech_conditioning_input . shape ) == 3 else speech_conditioning_input
conds = [ ]
for j in range ( speech_conditioning_input . shape [ 1 ] ) :
conds . append ( self . conditioning_encoder ( speech_conditioning_input [ : , j ] ) )
conds = torch . stack ( conds , dim = 1 )
2022-01-10 05:32:34 +00:00
mel_codes , mel_targets = self . build_aligned_inputs_and_targets ( mel_codes , self . start_mel_token , self . stop_mel_token )
if raw_mels is not None :
mel_inp = F . pad ( raw_mels , ( 0 , 4 ) )
else :
mel_inp = mel_codes
mel_emb = self . mel_embedding ( mel_inp )
2022-01-10 15:14:41 +00:00
mel_emb = mel_emb + self . mel_pos_embedding ( mel_codes ) + self . mel_solo_embedding
2022-01-10 23:17:31 +00:00
mel_logits = self . get_logits ( conds , mel_emb , self . mel_head )
2022-01-10 05:32:34 +00:00
loss_mel = F . cross_entropy ( mel_logits , mel_targets . long ( ) )
return loss_mel . mean ( )
def inference_speech ( self , speech_conditioning_input , text_inputs , * * hf_generate_kwargs ) :
if not hasattr ( self , ' inference_model ' ) :
# TODO: Decouple gpt_config from this inference model.
2022-01-10 15:14:41 +00:00
seq_length = self . max_mel_tokens + self . max_text_tokens + 5
2022-01-10 05:32:34 +00:00
gpt_config = GPT2Config ( vocab_size = self . max_mel_tokens ,
2022-01-10 15:14:41 +00:00
n_positions = seq_length ,
n_ctx = seq_length ,
2022-01-10 05:32:34 +00:00
n_embd = self . model_dim ,
n_layer = self . layers ,
n_head = self . heads ,
gradient_checkpointing = False ,
use_cache = True )
self . inference_model = GPT2InferenceModel ( gpt_config , self . gpt , self . mel_pos_embedding , self . final_norm , self . mel_head )
text_inputs = F . pad ( text_inputs , ( 0 , 1 ) , value = self . stop_text_token )
text_inputs , text_targets = self . build_aligned_inputs_and_targets ( text_inputs , self . start_text_token , self . stop_text_token )
2022-01-10 15:14:41 +00:00
text_emb = self . text_embedding ( text_inputs ) + self . text_pos_embedding ( text_inputs )
2022-01-10 05:32:34 +00:00
2022-01-10 23:17:31 +00:00
speech_conditioning_input = speech_conditioning_input . unsqueeze ( 1 ) if len ( speech_conditioning_input . shape ) == 3 else speech_conditioning_input
conds = [ ]
for j in range ( speech_conditioning_input . shape [ 1 ] ) :
conds . append ( self . conditioning_encoder ( speech_conditioning_input [ : , j ] ) )
conds = torch . stack ( conds , dim = 1 )
2022-01-10 05:32:34 +00:00
2022-01-10 23:17:31 +00:00
emb = torch . cat ( [ conds , text_emb ] , dim = 1 )
2022-01-10 05:32:34 +00:00
self . inference_model . store_mel_emb ( emb )
fake_inputs = torch . full ( ( emb . shape [ 0 ] , emb . shape [ 1 ] + 1 , ) , fill_value = 1 , dtype = torch . long , device = text_inputs . device )
fake_inputs [ : , - 1 ] = self . start_mel_token
gen = self . inference_model . generate ( fake_inputs , bos_token_id = self . start_mel_token , pad_token_id = self . stop_mel_token , eos_token_id = self . stop_mel_token ,
max_length = self . seq_length , * * hf_generate_kwargs )
return gen [ : , fake_inputs . shape [ 1 ] : ]
@register_model
def register_unified_voice2 ( opt_net , opt ) :
return UnifiedVoice ( * * opt_get ( opt_net , [ ' kwargs ' ] , { } ) )
if __name__ == ' __main__ ' :
2022-01-10 23:17:31 +00:00
gpt = UnifiedVoice ( model_dim = 256 , heads = 4 , train_solo_embeddings = True , use_mel_codes_as_input = True , max_conditioning_inputs = 4 )
l = gpt ( torch . randn ( 2 , 3 , 80 , 800 ) ,
torch . randint ( high = len ( symbols ) , size = ( 2 , 120 ) ) ,
torch . tensor ( [ 32 , 120 ] ) ,
2022-01-10 05:32:34 +00:00
torch . randint ( high = 8192 , size = ( 2 , 250 ) ) ,
2022-01-10 23:17:31 +00:00
torch . tensor ( [ 250 * 256 , 195 * 256 ] ) )
2022-01-10 05:32:34 +00:00
gpt . text_forward ( torch . randn ( 2 , 80 , 800 ) , torch . randint ( high = 50 , size = ( 2 , 80 ) ) , torch . tensor ( [ 32 , 80 ] ) )