DL-Art-School/codes/models/vqvae/gumbel_quantizer.py

24 lines
897 B
Python
Raw Normal View History

2021-09-24 05:32:03 +00:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
class GumbelQuantizer(nn.Module):
def __init__(self, inp_dim, codebook_dim, num_tokens, straight_through=False, temperature=.9):
super().__init__()
self.to_logits = nn.Conv1d(inp_dim, num_tokens, 1)
self.codebook = nn.Embedding(num_tokens, codebook_dim)
self.straight_through = straight_through
self.temperature = temperature
def embed_code(self, codes):
return self.codebook(codes)
def forward(self, h):
h = h.permute(0,2,1)
logits = self.to_logits(h)
logits = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=self.straight_through)
codes = logits.argmax(dim=1).flatten(1)
sampled = einsum('b n l, n d -> b d l', logits, self.codebook.weight)
return sampled.permute(0,2,1), 0, codes