DL-Art-School/codes/scripts/audio/prep_music/phase_1_split_files.py

71 lines
3.0 KiB
Python
Raw Normal View History

2022-04-20 06:27:49 +00:00
"""
Master script that processes all MP3 files found in an input directory. Splits those files up into sub-files of a
predetermined duration.
"""
import argparse
import functools
import os
from multiprocessing.pool import ThreadPool
import torch
import torchaudio
from tqdm import tqdm
2022-05-20 17:01:17 +00:00
from data.util import find_audio_files, find_files_of_type
2022-04-20 06:27:49 +00:00
from utils.util import load_audio
def report_progress(progress_file, file):
with open(progress_file, 'a', encoding='utf-8') as f:
f.write(f'{file}\n')
def process_file(file, base_path, output_path, progress_file, duration_per_clip, sampling_rate=22050):
2022-07-01 06:44:20 +00:00
lp = os.path.basename(file).lower()
if ' live' in lp or 'concert' in lp:
print(f"Skipping file {file} because likely a live performance")
report_progress(progress_file, file)
return
2022-04-20 06:27:49 +00:00
try:
audio = load_audio(file, sampling_rate)
except:
2022-05-19 19:39:32 +00:00
print(f"Error loading file {file}")
2022-04-20 06:27:49 +00:00
report_progress(progress_file, file)
return
outdir = os.path.join(output_path, f'{os.path.relpath(file, base_path)[:-4]}').replace('.', '').strip()
os.makedirs(outdir, exist_ok=True)
splits = torch.split(audio, duration_per_clip * sampling_rate, dim=-1)
for i, spl in enumerate(splits):
if spl.shape[-1] != duration_per_clip*sampling_rate:
continue # In general, this just means "skip the last item".
2022-05-16 03:50:38 +00:00
torchaudio.save(f'{outdir}/{i:05d}.wav', spl.unsqueeze(0), sampling_rate, encoding="PCM_S")
2022-04-20 06:27:49 +00:00
report_progress(progress_file, file)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
2022-07-01 06:44:20 +00:00
parser.add_argument('-path', type=str, help='Path to search for files', default='C:\\Users\\James\\Downloads\\soundcloud-dl\\sc2')
parser.add_argument('-progress_file', type=str, help='Place to store all files that have already been processed', default='C:\\Users\\James\\Downloads\\soundcloud-dl\\sc2\\already_processed.txt')
parser.add_argument('-output_path', type=str, help='Path for output files', default='Y:\\split\\soundcloud_mixes\\bigmix1')
2022-06-20 21:37:48 +00:00
parser.add_argument('-num_threads', type=int, help='Number of concurrent workers processing files.', default=4)
2022-04-20 06:27:49 +00:00
parser.add_argument('-duration', type=int, help='Duration per clip in seconds', default=30)
args = parser.parse_args()
processed_files = set()
if os.path.exists(args.progress_file):
with open(args.progress_file, 'r', encoding='utf-8') as f:
for line in f.readlines():
processed_files.add(line.strip())
2022-05-27 17:40:31 +00:00
files = set(find_audio_files(args.path, include_nonwav=True))
2022-04-20 06:27:49 +00:00
orig_len = len(files)
files = files - processed_files
print(f"Found {len(files)} files to process. Total processing is {100*(orig_len-len(files))/orig_len}% complete.")
with ThreadPool(args.num_threads) as pool:
list(tqdm(pool.imap(functools.partial(process_file, output_path=args.output_path, base_path=args.path,
progress_file=args.progress_file, duration_per_clip=args.duration), files), total=len(files)))