DL-Art-School/codes/sweep.py

52 lines
2.2 KiB
Python
Raw Normal View History

2022-02-11 17:46:37 +00:00
import functools
import os
from multiprocessing.pool import ThreadPool
import torch
from train import Trainer
from utils import options as option
def launch_trainer(opt, opt_path=''):
rank = opt['gpu_ids'][0]
os.environ['CUDA_VISIBLE_DEVICES'] = [rank]
print('export CUDA_VISIBLE_DEVICES=' + rank)
trainer = Trainer()
opt['dist'] = False
trainer.rank = -1
torch.cuda.set_device(rank)
trainer.init(opt_path, opt, 'none')
trainer.do_training()
if __name__ == '__main__':
"""
Ad-hoc script (hard coded; no command-line parameters) that spawns multiple separate trainers from a single options
file, with a hard-coded set of modifications.
"""
base_opt = '../options/train_diffusion_tts.yml'
modifications = {
'baseline': {},
'only_conv': {'networks': {'generator': {'kwargs': {'cond_transformer_depth': 4, 'mid_transformer_depth': 1}}}},
'intermediary_attention': {'networks': {'generator': {'kwargs': {'attention_resolutions': [32,64], 'num_res_blocks': [2, 2, 2, 2, 2, 2, 2]}}}},
'more_resblocks': {'networks': {'generator': {'kwargs': {'num_res_blocks': [3, 3, 3, 3, 3, 3, 2]}}}},
'less_resblocks': {'networks': {'generator': {'kwargs': {'num_res_blocks': [1, 1, 1, 1, 1, 1, 1]}}}},
'wider': {'networks': {'generator': {'kwargs': {'channel_mult': [1,2,4,6,8,8,8]}}}},
'inject_every_layer': {'networks': {'generator': {'kwargs': {'token_conditioning_resolutions': [1,2,4,8,16,32,64]}}}},
'deep_conditioning': {'networks': {'generator': {'kwargs': {'cond_transformer_depth': 12}}}},
}
opt = option.parse(base_opt, is_train=True)
all_opts = []
for i, (mod, mod_dict) in enumerate(modifications.items()):
nd = opt.copy()
nd.update(mod_dict)
opt['gpu_ids'] = [i]
nd['name'] = f'{nd["name"]}_{mod}'
nd['wandb_run_name'] = mod
base_path = nd['path']['log']
for k, p in nd['path'].items():
if isinstance(p, str) and base_path in p:
nd['path'][k] = p.replace(base_path, f'{base_path}\\{mod}')
all_opts.append(nd)
with ThreadPool(len(modifications)) as pool:
list(pool.imap(functools.partial(launch_trainer, opt_path=base_opt), all_opts))