DL-Art-School/codes/data/audio/grand_conjoined_dataset.py

217 lines
8.5 KiB
Python
Raw Normal View History

2021-12-23 21:32:33 +00:00
import os
import os
import random
import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
from munch import munchify
from tqdm import tqdm
from transformers import GPT2TokenizerFast
from data.audio.unsupervised_audio_dataset import load_audio, UnsupervisedAudioDataset
from data.text.hf_datasets_wrapper import HfDataset
from data.util import find_files_of_type, is_audio_file
from models.tacotron2.taco_utils import load_filepaths_and_text
from models.tacotron2.text import text_to_sequence
from utils.util import opt_get
def build_paired_voice_dataset(args):
from data.audio.paired_voice_audio_dataset import TextWavLoader as D
from models.tacotron2.hparams import create_hparams
default_params = create_hparams()
default_params.update(args)
dataset_opt = munchify(default_params)
return D(dataset_opt)
def clamp(x, minimum, maximum):
return max(minimum, min(x, maximum))
class GrandConjoinedDataset(torch.utils.data.Dataset):
"""
A joint text & speech dataset that joins three separate datasets into a single batch:
1. Unpaired text
2. Unpaired speech
3. Paired speech & text
Supports situations where the underlying data sources for these three elements are differently sized, e.g. you can
have a massive text corpus of 1B elements, a smaller unpaired speech corpus, and a small paired speech<->text corpus.
Performs tokenization at this level, ignoring any tokenization performed by upstream datasets.
"""
def __init__(self, opt):
2021-12-23 22:03:20 +00:00
sample_rate = 22050 # Fixed.
2021-12-23 21:32:33 +00:00
paired_dataset_args = opt['paired_dataset_args']
2021-12-23 22:03:20 +00:00
self.only_paired = opt_get(opt, ['only_paired'], False)
if not self.only_paired:
unsupervised_audio_args = opt['unsupervised_audio_args']
text_corpus_args = opt['text_corpus_args']
2021-12-23 21:32:33 +00:00
self.max_paired_audio_length = opt['max_paired_audio_length']
self.max_paired_text_length = opt['max_paired_text_length']
self.max_solo_audio_length = opt['max_solo_audio_length']
self.max_solo_text_length = opt['max_solo_text_length']
self.collate = opt_get(opt, ['needs_collate'], False)
2021-12-23 21:32:33 +00:00
self.sample_rate = sample_rate
# Set some sane arguments for all three datasets.
paired_dataset_args['needs_collate'] = self.collate
2021-12-23 21:32:33 +00:00
paired_dataset_args['load_conditioning'] = False
paired_dataset_args['sample_rate'] = sample_rate
paired_dataset_args['max_wav_length'] = self.max_paired_audio_length
paired_dataset_args['max_text_length'] = self.max_paired_text_length
self.speech_and_text = build_paired_voice_dataset(paired_dataset_args)
2021-12-23 22:03:20 +00:00
if not self.only_paired:
unsupervised_audio_args['sampling_rate'] = sample_rate
unsupervised_audio_args['do_augmentation'] = False
unsupervised_audio_args['resample_clip'] = False
if self.collate:
unsupervised_audio_args['pad_to_samples'] = self.max_solo_audio_length
2021-12-23 22:03:20 +00:00
self.speech = UnsupervisedAudioDataset(unsupervised_audio_args)
self.text = HfDataset(**text_corpus_args)
2021-12-23 21:32:33 +00:00
def fetch_text_at(self, i):
try:
txt = self.text[i % len(self.text)]['text']
assert '*' not in txt # This is a hack to get around the use of '*' to mask expletives in some text-only datasets. There really isn't a linguistic use for this character anyways.
2021-12-23 21:32:33 +00:00
tok = self.speech_and_text.get_text(txt)
padding_required = self.max_solo_text_length - tok.shape[0]
if padding_required < 0:
2021-12-23 22:03:20 +00:00
# Just truncate since there is no conditioning required.
2021-12-23 21:32:33 +00:00
tok = tok[:self.max_solo_text_length]
elif padding_required > 0:
tok = F.pad(tok, (0, padding_required))
return txt, tok
except:
# This is fully expected: there are a lot of text strings we intentionally do not
# handle (e.g. ones with emojis, or other languages). Just return another one.
return self.fetch_text_at((i+1) % len(self.text))
def fetch_snt_at(self, i):
fetched = self.speech_and_text[i % len(self.speech_and_text)]
if self.collate:
tseq, wav, path, text, cond = fetched
return {
'real_text': text,
'padded_text': tseq,
'text_lengths': torch.tensor(tseq.shape[0], dtype=torch.long),
'wav': wav,
'wav_lengths': torch.tensor(wav.shape[-1], dtype=torch.long),
'filenames': path
}
else:
return fetched
2021-12-23 21:32:33 +00:00
def __getitem__(self, i):
snt = self.fetch_snt_at(i)
2021-12-23 22:03:20 +00:00
if self.only_paired:
return {
'paired_audio': snt['wav'],
'paired_audio_lengths': snt['wav_lengths'],
'paired_text': snt['real_text'],
'paired_text_tokens': snt['padded_text'],
'paired_file': snt['filenames'],
'speech_audio': snt['wav'],
2021-12-23 22:20:26 +00:00
'speech_audio_lengths': snt['wav_lengths'],
2021-12-23 22:03:20 +00:00
'speech_file': snt['filenames'],
'text_text': snt['real_text'],
'text_tokens': snt['padded_text'],
}
else:
txt, txt_tok = self.fetch_text_at(i % len(self.text))
sp = self.speech[i % len(self.speech)]
# Set upper bound on solo speech lengths. This is handled automatically when collation is turned off, but needs to be done otherwise.
sp['clip'] = sp['clip'][:, :self.max_solo_audio_length]
sp['clip_lengths'] = clamp(sp['clip_lengths'], 0, self.max_solo_audio_length)
2021-12-23 22:03:20 +00:00
return {
'paired_audio': snt['wav'],
'paired_audio_lengths': snt['wav_lengths'],
'paired_text': snt['real_text'],
'paired_text_tokens': snt['padded_text'],
'paired_file': snt['filenames'],
'speech_audio': sp['clip'],
'speech_audio_lengths': sp['clip_lengths'],
2021-12-23 22:03:20 +00:00
'speech_file': sp['path'],
'text_text': txt,
'text_tokens': txt_tok,
}
2021-12-23 21:32:33 +00:00
def __len__(self):
2021-12-23 22:03:20 +00:00
if self.only_paired:
return len(self.speech_and_text)
else:
return max(len(self.speech), len(self.speech_and_text), len(self.text))
2021-12-23 21:32:33 +00:00
if __name__ == '__main__':
batch_sz = 8
2021-12-23 22:03:20 +00:00
train_params = {
2021-12-23 21:32:33 +00:00
'mode': 'grand_conjoined_voice',
'phase': 'train',
'n_workers': 0,
'batch_size': batch_sz,
'max_paired_audio_length': 255995,
'max_paired_text_length': 80,
'max_solo_text_length': 330,
'max_solo_audio_length': 300000,
'paired_dataset_args': {
'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
'fetcher_mode': ['libritts'],
'use_bpe_tokenizer': False,
2021-12-23 21:32:33 +00:00
},
'unsupervised_audio_args': {
'path': ['Z:\\bigasr_dataset\\librispeech\\test_clean'],
'cache_path': 'test_cache_delete_me.pth',
},
'text_corpus_args': {
'corpi': [['bookcorpus', '']],
'cache_path': 'Z:\\huggingface_datasets\\cache',
},
}
2021-12-23 22:03:20 +00:00
val_params = {
'mode': 'grand_conjoined_voice',
'phase': 'val',
'n_workers': 0,
'batch_size': batch_sz,
'max_paired_audio_length': 255995,
'max_paired_text_length': 80,
'max_solo_text_length': 330,
'max_solo_audio_length': 300000,
'only_paired': True,
'needs_collate': True,
2021-12-23 22:03:20 +00:00
'paired_dataset_args': {
'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
'fetcher_mode': ['libritts'],
'use_bpe_tokenizer': False,
2021-12-23 22:03:20 +00:00
},
}
2021-12-23 21:32:33 +00:00
from data import create_dataset, create_dataloader
ds, c = create_dataset(train_params, return_collate=True)
dl = create_dataloader(ds, train_params, collate_fn=c)
2021-12-23 21:32:33 +00:00
def save(b, i, ib, key):
torchaudio.save(f'{i}_clip_{ib}_{key}.wav', b[key][ib], 22050)
def decode(b, ib, key):
return ds.speech_and_text.tokenizer.decode(b[key][ib].cpu().numpy())
i = 0
m = None
for i, b in tqdm(enumerate(dl)):
for ib in range(batch_sz):
#save(b, i, ib, 'paired_audio')
print(f'Paired text: {b["paired_text"][ib]}')
print(f'Paired text decoded: {decode(b, ib, "paired_text_tokens")}')
#save(b, i, ib, 'speech_audio')
print(f'Text: {b["text_text"][ib]}')
print(f'Text decoded: {decode(b, ib, "text_tokens")}')